18 research outputs found

    Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation

    Get PDF
    The performance of reanalysis-driven Canadian Regional Climate Model, version 5 (CRCM5) in reproducing the present climate over the North American COordinated Regional climate Downscaling EXperiment domain for the 1989–2008 period has been assessed in comparison with several observation-based datasets. The model reproduces satisfactorily the near-surface temperature and precipitation characteristics over most part of North America. Coastal and mountainous zones remain problematic: a cold bias (2–6 °C) prevails over Rocky Mountains in summertime and all year-round over Mexico; winter precipitation in mountainous coastal regions is overestimated. The precipitation patterns related to the North American Monsoon are well reproduced, except on its northern limit. The spatial and temporal structure of the Great Plains Low-Level Jet is well reproduced by the model; however, the night-time precipitation maximum in the jet area is underestimated. The performance of CRCM5 was assessed against earlier CRCM versions and other RCMs. CRCM5 is shown to have been substantially improved compared to CRCM3 and CRCM4 in terms of seasonal mean statistics, and to be comparable to other modern RCMs

    Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation

    Get PDF
    The performance of reanalysis-driven Canadian Regional Climate Model, version 5 (CRCM5) in reproducing the present climate over the North American COordinated Regional climate Downscaling EXperiment domain for the 1989-2008 period has been assessed in comparison with several observation-based datasets. The model reproduces satisfactorily the near-surface temperature and precipitation characteristics over most part of North America. Coastal and mountainous zones remain problematic: a cold bias (2-6°C) prevails over Rocky Mountains in summertime and all year-round over Mexico; winter precipitation in mountainous coastal regions is overestimated. The precipitation patterns related to the North American Monsoon are well reproduced, except on its northern limit. The spatial and temporal structure of the Great Plains Low-Level Jet is well reproduced by the model; however, the night-time precipitation maximum in the jet area is underestimated. The performance of CRCM5 was assessed against earlier CRCM versions and other RCMs. CRCM5 is shown to have been substantially improved compared to CRCM3 and CRCM4 in terms of seasonal mean statistics, and to be comparable to other modern RCM

    PIK3CA alterations and benefit with neratinib: analysis from the randomized, double-blind, placebo-controlled, phase III ExteNET trial

    No full text
    Background: Neratinib is an irreversible pan-HER tyrosine kinase inhibitor that inhibits PI3K/Akt and MAPK signaling pathways after HER2 receptor activation. The ExteNET study showed that neratinib significantly improved 5-year invasive disease-free survival (iDFS) in women who completed trastuzumab-based adjuvant therapy for early breast cancer (EBC). We assessed the prognostic and predictive significance of PIK3CA alterations in patients in ExteNET. Methods: Participants were women aged ≥ 18 years (≥ 20 years in Japan) with stage 1–3c (modified to stage 2–3c in February 2010) operable breast cancer, who had completed (neo)adjuvant chemotherapy plus trastuzumab ≤ 2 years before randomization, with no evidence of disease recurrence or metastatic disease at study entry. Patients were randomized to oral neratinib 240 mg/day or placebo for 1 year. Formalin-fixed, paraffin-embedded primary tumor specimens underwent polymerase chain reaction (PCR) PIK3CA testing for two hotspot mutations in exon 9, one hot-spot mutation in exon 20, and fluorescence in situ hybridization (FISH) analysis for PIK3CA amplification. The primary endpoint (iDFS) was tested with log-rank test and hazard ratios (HRs) estimated using Cox proportional-hazards models. Results: Among the intent-to-treat population (n = 2840), tumor specimens were available for PCR testing (991 patients) and PIK3CA FISH (702 patients). Overall, 262 samples were PIK3CA altered: 201 were mutated (77%), 52 (20%) were amplified, and 9 (3%) were mutated and amplified. iDFS was non-significantly worse in placebo-treated patients with altered vs wild-type PIK3CA (HR 1.34; 95% CI 0.72–2.50; P = 0.357). Neratinib’s effect over placebo was significant in patients with PIK3CA-altered tumors (HR 0.41; 95% CI 0.17–0.90, P = 0.028) but not PIK3CA wild-type tumors (HR 0.72; 95% CI 0.36–1.41; P = 0.34). The interaction test was non-significant (P = 0.309). Conclusions: Although there was a greater absolute risk reduction associated with neratinib treatment of patients with PIK3CA-altered tumors in ExteNET, current data do not support PIK3CA alteration as a predictive biomarker of response to neratinib in HER2-positive EBC. Trial registration: ClinicalTrials.gov , NCT00878709 . Trial registered April 9, 2009.Other UBCNon UBCReviewedFacult
    corecore