12 research outputs found

    Kadının evlendikten sonra yalnızca önceki soyadını kullanabilmesi: Uygulamadaki aksaklıklar

    No full text
    Ulusal Hakemli - MakaleTürk Hukukunda aile soyadı olarak kocanın soyadı belirlendiği için kadın evlenme ile kendiliğinden bu soyadı almaktadır. Bu kural emredicidir, bu nedenle evlenen kadının önceki soyadını tek başına kullanmasına izin verilmemektedir. Bu durum kadının kişilik hakkını ihlal etmenin yanı sıra Anayasa’ya ve usûlüne uygun olarak onaylanarak taraf olunan çeşitli uluslararası antlaşmalara aykırı olduğundan, Avrupa İnsan Hakları Mahkemesi ve Anayasa Mahkemesi Bireysel Başvuru Kararlarının da içinde olduğu pek çok mahkeme kararına konu olmuştur. Gelinen noktada kadının evlenmeden önceki soyadını tek başına kullanabilmek için yargı organlarına başvurması de facto bir uygulama olarak karşımıza çıkmaktadır. Bu kapsamda uygulamada kadın nüfus idaresine ve eşine karşı dava açarak talebini ileri sürmektedir. Oysa kadının evlenmeden önceki soyadını tek başına kullanmak için yönelttiği talep çekişmesiz yargı işi özellikleri barındırmaktadır. Çalışmada ilk olarak TMK m. 187 hükmünün uygulama alanı incelenecek, sonrasında kadının ileri sürdüğü talebin çekişmesiz yargı kapsamında görülmesi gerektiği tiği, talebin hukuki niteliği ve çekişmesiz yargı ölçütleri ele alınarak tartışılacaktır

    PINK1 and Ataxin-2 as modifiers of growth

    No full text
    A recent report showed PINK1 transcript levels to be up- or down-regulated by the gain or loss of Ataxin-2 function, respectively, in human blood, in a human neural cell line and in mouse tissues. These observations may have profound implications for the regulation of cell growth and may be medically exploited for the treatment of cancer and neural atrophy..

    Ataxin-2 (Atxn2)-knock-out mice show branched chain amino acids and fatty acids pathway alterations

    No full text
    Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy

    Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 polyQ expansions, but only FBXW8 expression is dysregulated

    No full text
    The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson’s disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostic

    SerThr-PhosphoProteome of brain from aged PINK1-KO+A53T-SNCA mice reveals pT1928-MAP1B and pS3781-ANK2 deficits, as hub between autophagy and synapse changes

    No full text
    Hereditary Parkinson’s disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy

    FBXW8 is shifted into insolubility in <i>Atxn2</i>-CAG42-KIN mice due to interaction with expanded ATXN2.

    No full text
    <p>(A) Pulling either with anti-ATXN2 or anti-FBXW8 antibody, ATNX2 and FBXW8 show an interaction in the cerebellum of 18-month-old <i>Atxn2</i>-CAG42-KIN mice independent of the polyQ length (experiment repeated three times for anti-ATXN2 and once with anti-FBXW8, representative images). (B) In cerebellar tissue of 18-month-old <i>Atxn2</i>-CAG42-KIN mice FBXW8 protein level is downregulated in the RIPA-soluble fraction while it is upregulated in the SDS-soluble fraction (two independent experiments each with 4 <i>Atxn2</i><sup>CAG1/CAG1</sup> vs. 4 <i>Atxn2</i><sup>CAG42/CAG42</sup> mice).</p

    FBXW8 protein levels are dysregulated in SCA2 patient material.

    No full text
    <p>FBXW8 expression is upregulated at the transcript level in SCA2 patient skin fibroblasts (A; 4 CTL individuals vs. 4 SCA2 patients) as well as in SCA2 patient blood samples (B; 5 CTL individuals vs. 3 SCA2 patients). (C) At the protein level FBXW8 is decreased in the RIPA-soluble fraction while it is increased in the SDS-soluble fraction in SCA2 patient fibroblasts (4 CTL individuals vs. 4 SCA2 patients).</p

    PARK2 interacts with FBXW8 and is recruited into insolubility in <i>Atxn2</i>-CAG42-KIN mice.

    No full text
    <p>(A) In HeLa cells overexpressing Cherry-GFP-PARK2 and FBXW8-HA, pulling with anti-FBXW8 antibody resulted in the detection of FBXW8 as well as of PARK2 in Co-IP lysates, demonstrating their interaction (experiment repeated twice, representative image). (B) PARK2 interacts with FBXW8 in Co-IP samples of <i>Atxn2</i>-CAG42-KIN mice independent of the polyQ length. Lower bands represent PARK2 protein (experiment repeated once). (C) PARK2 protein level is decreased in the RIPA-soluble fraction while it is increased in the SDS-soluble fraction (8 <i>Atxn2</i><sup>CAG1/CAG1</sup> mice vs. ≥ 6 <i>Atxn2</i><sup>CAG42/CAG42</sup> mice).</p

    Poly(A)-binding protein is an ataxin-2 chaperone that emulsifies biomolecular condensates

    No full text
    Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs) which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar that dictates the behavior of a few key scaffold proteins that make up these phases but how the partitioning of hundreds of other SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, a SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14aa sequence that acts as an ataxin-2 condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal a new molecular function for ancient poly(A)-binding proteins as emulsifiers of biomolecular condensate proteins. These findings may inspire novel approaches to therapeutically target aberrant phases in disease
    corecore