7 research outputs found

    Hemoglobin determination with paired emitter detector diode

    Get PDF
    Two ordinary green light-emitting diodes used as light emitter and detector coupled with simple voltmeter form a complete, cost-effective prototype of a photometric hemoglobinometer. The device has been optimized for cuvette assays of total hemoglobin (Hb) in diluted blood using three different chemical methods recommended for the needs of clinical analysis (namely Drabkin, lauryl sulfate, and dithionite methods). The utility of developed device for real analytics has been validated by the assays of total Hb content in human blood. The results of analysis are fully compatible with those obtained using clinically recommended method and clinical analyzer

    Smartphone-Assisted Protein to Creatinine Ratio Determination on a Single Paper-Based Analytical Device

    No full text
    Proteinuria is a condition in which an excessive amount of protein is excreted in urine. It is, among others, an indicator of kidney disease or risk of cardiovascular disease. Rapid and reliable diagnosis and monitoring of proteinuria is of great importance for both patients and their physicians. For that reason, a paper-based sensor for proteinuria diagnosis was designed, optimized, and validated utilizing smartphone-assisted signal acquisition. In the first step, a few commonly employed protein assays were optimized and compared in terms of analytical performance on paper matrix. The tetrabromophenol blue method was selected as the one providing a sufficiently low limit of detection (39 mg·L−1) on the one hand and appropriate long-term stability (up to 3 months) on the other hand. The optimized assay was employed for protein-to-creatinine ratio (PCR) determination on a single paper-based sensor. For both analytes the linear ranges were within the clinically relevant range. The analytical usefulness of the developed sensors was demonstrated by a PCR recovery study in artificial urine. The obtained PCR recoveries were from ca. 80 to 150%

    Multi-Substrate Biofuel Cell Utilizing Glucose, Fructose and Sucrose as the Anode Fuels

    No full text
    A significant problem still exists with the low power output and durability of the bioelectrochemical fuel cells. We constructed a fuel cell with an enzymatic cascade at the anode for efficient energy conversion. The construction involved fabrication of the flow-through cell by three-dimensional printing. Gold nanoparticles with covalently bound naphthoquinone moieties deposited on cellulose/polypyrrole (CPPy) paper allowed us to significantly improve the catalysis rate, both at the anode and cathode of the fuel cell. The enzymatic cascade on the anode consisted of invertase, mutarotase, Flavine Adenine Dinucleotide (FAD)-dependent glucose dehydrogenase and fructose dehydrogenase. The multi-substrate anode utilized glucose, fructose, sucrose, or a combination of them, as the anode fuel and molecular oxygen were the oxidant at the laccase-based cathode. Laccase was adsorbed on the same type of naphthoquinone modified gold nanoparticles. Interestingly, the naphthoquinone modified gold nanoparticles acted as the enzyme orienting units and not as mediators since the catalyzed oxygen reduction occurred at the potential where direct electron transfer takes place. Thanks to the good catalytic and capacitive properties of the modified electrodes, the power density of the sucrose/oxygen enzymatic fuel cells (EFC) reached 0.81 mW cm−2, which is beneficial for a cell composed of a single cathode and anode
    corecore