55 research outputs found

    Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    Get PDF
    We present experimental and theoretical investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer a widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 {\mu}m. By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.Comment: 11 pages, 8 figure

    Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators

    Get PDF
    Funding: Ł.D.acknowledges the financial support from the Alexander von Humboldt Foundation. S.-H. K. acknowledges the financial support from the National Research Foundation of Korea through the Korean Government Grant NRF-2019R1A2C4069587. We are furthermore grateful for the support by the State of Bavaria.Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications. Here, we demonstrate an essential component of such a system in the form of a Purcell-enhanced single-photon source based on a quantum dot coupled to a robust on-chip integrated resonator. For that, we develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides. Under resonant excitation conditions, we observe an over 2-fold spontaneous emission rate enhancement using Purcell effect and gain a full coherent optical control of a QD-two-level system via Rabi oscillations. Furthermore, we demonstrate an on-demand single-photon generation with strongly suppressed multiphoton emission probability as low as 1% and two-photon interference with visibility up to 95%. This integrated single-photon source can be readily scaled up, promising a realistic pathway for scalable on-chip linear optical quantum simulation, quantum computation, and quantum networks.PostprintPeer reviewe

    Relaxation oscillations and ultrafast emission pulses in a disordered expanding polariton condensate

    Get PDF
    Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.Publisher PDFPeer reviewe

    Relaxation oscillations and ultrafast emission pulses in a disordered expanding polariton condensate

    Get PDF
    Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.Publisher PDFPeer reviewe

    Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K

    Get PDF
    This research was supported by the National Science Center of Poland within Grant No. 2011/02/A/ST3/00152.We report on single photon emission from a self-assembled InAs/InGaAlAs/InP quantum dash emitting at 1.55 µm at elevated temperatures. The photon auto-correlation histograms of the emission from a charged exciton indicate clear antibunching dips with as-measured g(2)(0) values significantly below 0.5 recorded at temperatures up to 80 K. It proves that charged exciton complex in a single quantum dash of the mature InP-based material system can act as a true single photon source up to at least liquid nitrogen temperature. This demonstrates the huge potential of InAs on InP nanostructures as non-classical light emitters for long-distance fiber-based secure communication technologies.PostprintPublisher PDFPeer reviewe

    Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots

    Get PDF
    funding by the DFG within the project SCHN1376-5.1 and PR1749/1-1. Further, we acknowledge financial support by the State of Bavaria and the German Ministry of Education and Research (BMBF) within the project Q.Link.X (FKZ 16KIS0871). Project HYPER-U-P-S has received funding from the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union's Horizon 2020 Programme. AP would like to thank the Swedish Research Council and Carl Tryggers Stiftelse. J. M.-S. acknowledges financial support from the Ramon y Cajal Program from the Government of Spain (RYC2018-026196-I) and the ClarinProgramme from the Government of the Principality of Asturias and a Marie Curie-COFUND grant (PA-18-ACB17-29).Strain tuning emerged as an appealing tool for tuning of fundamental optical properties of solid state quantum emitters. In particular, the wavelength and fine structure of quantum dot states can be tuned using hybrid semiconductor-piezoelectric devices. Here, we show how an applied external stress can directly impact the polarization properties of coupled InAs quantum dot-micropillar cavity systems. In our experiment, we find that we can reversibly tune the anisotropic polarization splitting of the fundamental microcavity mode by approximately 60 μeV. We discuss the origin of this tuning mechanism, which arises from an interplay between elastic deformation and the photoelastic effect in our micropillar. Finally, we exploit this effect to tune the quantum dot polarization opto-mechanically via the polarization-anisotropic Purcell effect. Our work paves the way for optomechanical and reversible tuning of the polarization and spin properties of light-matter coupled solid state systems.PostprintPeer reviewe

    Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    Get PDF
    The work was supported by the Grant No. 2011/02/A/ST3/00152 from the Polish National Science Centre (Narodowe Centrum Nauki). K. G. acknowledges support by the Grant No. 2014/12/B/ST3/04603 from the Polish National Science Centre (Narodowe Centrum Nauki). S. H. acknowledges support from the State of Bavaria in Germany.We present experimental and theoretical investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer a widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 μm. By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.PostprintPeer reviewe

    Exciton spin relaxation in InAs/InGaAlAs/InP(001) quantum dashes emitting near 1.55 μm

    Get PDF
    This research was supported by The National Science Center Grant MAESTRO No. 2011/02/A/ST3/00152. Ł. D. acknowledges the financial support from the Foundation for Polish Science within the START fellowship.Exciton spin and related optical polarization in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dashes emitting at 1.55 μm are investigated by means of polarization- and time-resolved photoluminescence, as well as photoluminescence excitation spectroscopy, at cryogenic temperature. We investigate the influence of highly non-resonant and quasi-resonant optical spin pumping conditions on spin polarization and spin memory of the quantum dash ground state. We show that a spin pumping scheme, utilizing the longitudinal-optical-phonon-mediated coherent scattering process, can lead to the polarization degree above 50%. We discuss the role of intrinsic asymmetries in the quantum dash that influence values of the degree of polarization and its time evolution.PostprintPeer reviewe
    corecore