14 research outputs found

    The Effects of Propagation Techniques on Cell Wall Chemistry and Wood Anatomy in Micropropagated and Grafted Plants of the Dutch Elm Hybrid 'Dodoens'

    Get PDF
    Determination of wood anatomy traits and the chemical attributes of plant cell walls is of great importance for the evaluation of both the effects of hybridization and the results of breeding strategies within the genus Ulmus, because these are both aimed at an enhanced tolerance to dutch elm disease (caused by Ophiostoma ulmi and O. novo-ulmi) and to the improvement of trees having desired mechanical properties. The objective of this study was to determine whether the routinely applied vegetative propagation techniques of in vitro micropropagation or grafting would result in any change to lignin monomer composition and content, macromolecular traits of cellulose, neutral sugar composition, or the vascular and fiber anatomy traits in the stems of the dutch elm hybrid cultivar Dodoens (i.e., open-pollinated Ulmus glabra 'Exoniensis' × U. wallichiana P39). Propagation techniques appeared to have no direct effect on lignin monomer composition. The differences in the relative proportion of guaiacyl units in lignin between the stock types were not significant, showing that no advantage could be attributed to either stock type toward an enhanced tolerance to dutch elm disease. The micropropagated plants reached significantly higher values for 13 traits (32.5%), primarily associated with the relative proportion of d-glucose and the macromolecular traits of cellulose to compensate for a lower content of holocellulose. The grafts reached higher values for 10 traits (25%), including the relative proportions of d-xylose, d-mannose, and d-galactose. The effect of the rootstock might contribute to different amounts of these cell wall substances in the grafts. The grafts also reached a higher lignin content, which may provide minor advantages in terms of mechanical and physical properties to the cell walls of this stock type. Similarities between the stock types were found for 17 traits (42.5%). Both stock types formed compact homogeneous clusters clearly separated from each other in the multivariate wood trait analysis

    Effects of Phytophthora Inoculations on Photosynthetic Behaviour and Induced Defence Responses of Plant Volatiles in Field-Grown Hybrid Poplar Tolerant to Bark Canker Disease

    No full text
    Bark cankers accompanied by symptoms of decline and dieback are the result of a destructive disease caused by Phytophthora infections in woody plants. Pathogenicity, gas exchange, chlorophyll a fluorescence, and volatile responses to P. cactorum and P. plurivora inoculations were studied in field-grown 10-year-old hybrid poplar plants. The most stressful effects of P. cactorum on photosynthetic behaviour were found at days 30 and 38 post-inoculation (p.-i.), whereas major disturbances induced by P. plurivora were identified at day 30 p.-i. and also belatedly at day 52 p.-i. The spectrum of volatile organic compounds emitted at day 98 p.-i. was richer than that at day 9 p.-i, and the emissions of both sesquiterpenes α-cubebene and germacrene D were induced solely by the Phytophthora inoculations. Significant positive relationships were found between both the axial and the tangential development of bark cankers and the emissions of α-cubebene and β-caryophyllene, respectively. These results show that both α-cubebene and germacrene D are signal molecules for the suppression of Phytophthora hyphae spread from necrotic sites of the bark to healthy living tissues. Four years following inoculations, for the majority of the inoculated plants, the callus tissue had already closed over the bark cankers

    Anatomical and morphological spine variation in Gymnocalycium kieslingii subsp. castaneum (Cactaceae)

    No full text
    Although spine variation within cacti species or populations is assumed to be large, the minimum sample size of different spine anatomical and morphological traits required for species description is less studied. There are studies where only 2 spines were used for taxonomical comparison amnog species. Therefore, the spine structure variation within areoles and individuals of one population of Gymnocalycium kieslingii subsp. castaneum (Ferrari) Slaba was analyzed. Fifteen plants were selected and from each plant one areole from the basal, middle and upper part of the plant body was sampled. A scanning electron microscopy was used for spine surface description and a light microscopy for measurements of spine width, thickness, cross-section area, fiber diameter and fiber cell wall thickness. The spine surface was more visible and damaged less in the upper part of the plant body than in the basal part. Large spine and fiber differences were found between upper and lower parts of the plant body, but also within single areoles. In general, the examined traits in the upper part had by 8–17% higher values than in the lower parts. The variation of spine and fiber traits within areoles was lower than the differences between individuals. The minimum sample size was largely influenced by the studied spine and fiber traits, ranging from 1 to 70 spines. The results provide pioneer information useful in spine sample collection in the field for taxonomical, biomechanical and structural studies. Nevertheless, similar studies should be carried out for other cacti species to make generalizations. The large spine and fiber variation within areoles observed in our study indicates a very complex spine morphogenesis

    A Structural Assessment of Sycamore Maple Bark Disintegration by Nectria cinnabarina

    No full text
    Previous phytopathological studies of the fungal pathogen Nectria cinnabarina have been focused on its distribution and host diversity but little is known about the spread of this pathogen and the defence responses of forest trees to an infection inside host tissues. Histopathological alterations of bark, periderm, phloem and woody tissues were investigated in sycamore maple (Acer pseudoplatanus) branches following their natural attack by the advanced anamorph and teleomorph developmental stages of the fungus. Light, fluorescence, confocal laser scanning and scanning electron microscopy techniques supplemented by X-ray micro-computed tomography imaging were used to distinguish between healthy and disintegrated plant tissues. The intercellular spread of fungal hyphae was found primarily in the phelloderm. Expanding hyphae aggregations produced ruptures in the phellem and the disintegration of both phellogen and phellodermal parenchyma cells in close proximity to the expanding fruiting bodies of the fungus. Thicker hyphae of the teleomorph fungal stage heavily disintegrated the phelloderm tissues and also induced enhanced sclerification of the nearby phloem tissues that limited the spread of the infection into the sieve tubes. Both the intercellular and intracellular spread of hyphae inside the peripheral parts of sclereid clusters led to the disintegration of the compound middle lamellae but the hyphae were only rarely able to pass through these structural phloem barriers. The massive fungal colonization of both lumens and disintegrated tangential cell walls of ray parenchyma cells resulted in severe cambial necroses. Although the hyphae penetrated into the outermost annual growth rings of the xylem, no cell wall disintegration of the parenchyma cells, vessels and fibres was revealed. Despite the local cambial necroses and severe phloem ray disintegration, the bark remained attached to the examined branches and no bark cankers were formed

    Chemical Composition and Thermal Behavior of Kraft Lignins

    No full text
    Lignin has great potential for utilization as a green raw material or as an additive in various industrial applications, such as energy, valuable chemicals, or cost-effective materials. In this study, we assessed a commercial form of lignin isolated using LignoBoost technology (LB lignin) as well as three other types of lignin (two samples of non-wood lignins and one hardwood kraft lignin) isolated from the waste liquors produced during the pulping process. Measurements were taken for elemental analysis, methoxyl and ash content, higher heating values, thermogravimetric analysis, and molecular weight determination. We found that the elemental composition of the isolated lignins affected their thermal stability, activation energies, and higher heating values. The lignin samples examined showed varying amounts of functional groups, inorganic component compositions, and molecular weight distributions. Mean activation energies ranged from 93 to 281 kJ/mol. Lignins with bimodal molecular weight distribution were thermally decomposed in two stages, whereas the LB lignin showing a unimodal molecular weight distribution was decomposed in a single thermal stage. Based on its thermal properties, the LB lignin may find direct applications in biocomposites where a higher thermal resistance is required

    The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood

    No full text
    Traditional flame retardants often contain halogens and produce toxic gases when burned. Hence, in this study, low-cost, environmentally friendly compounds that act as fire retardants are investigated. These materials often contain nanoparticles, from which TiO2 and SiO2 are the most promising. In this work, pedunculate oak wood specimens were modified with sodium silicate (Na2SiO3, i.e., water glass) and TiO2, SiO2, and ZnO nanoparticles using the vacuum-pressure technique. Changes in the samples and fire characteristics of modified wood were studied via thermal analysis (TA), infrared spectroscopy (FTIR), and scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The results of TA showed the most significant wood decomposition at a temperature of 350 °C, with a non-significant influence of the nanoparticles. A dominant effect of sodium silicate was observed in the main weight-loss step, resulting in a drop in decomposition temperature within the temperature range of 36–44 °C. More intensive decomposition of wood treated with water glass and nanoparticles led to a faster release of non-combustible gases, which slowed down the combustion process. The results demonstrated that wood modifications using sodium silicate and nanoparticle systems have potentially enhanced flame retardant properties

    Different Responses in Vascular Traits between Dutch Elm Hybrids with a Contrasting Tolerance to Dutch Elm Disease

    No full text
    The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, ‘Groeneveld’ and ‘Dodoens’, which show different vascular architecture in the secondary xylem and possess contrasting tolerances to DED. ‘Groeneveld’ trees, sensitive to DED, possessed a high number of small earlywood vessels. However, these trees showed a poor response to DED infection for the earlywood vascular characteristics. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 decreased from 65.4% down to 53.2%. A delayed response in the increasing density of vessels showing a reduced size in the latewood prevented neither the rapid fungal spread nor the massive colonisation of the secondary xylem tissues resulting in the death of the infected trees. ‘Dodoens’ trees, tolerant to DED, possessed a low number of large earlywood vessels and showed a prominent and fast response to DED infection. Vessel lumen areas of newly formed earlywood vessels were severely reduced together with the vessel size : number ratio. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 increased from 75.6% up to 92.9%. A trend in the increasing density of vessels showing a reduced size was maintained not only in the latewood that was formed in the year of infection but also in the earlywood that was formed in the consecutive year. The occurrence of fungal hyphae in the earlywood vessels that were formed a year following the infection was severely restricted, as revealed by X-ray micro-computed tomography imaging. Possible reasons responsible for a contrasting survival of ‘Groeneveld’ and ‘Dodoens’ trees are discussed

    Změny chemických a fyzikálních vlastností papírových dokumentů během přirozeného stárnutí

    No full text
    The aim of this study was to assess the changes in chemical and physical properties of selected paper documents, dating from the 18th century to the present date.Cílem této studie bylo posoudit změny v chemických a fyzikálních vlastností vybraných papírových dokumentů, pocházející od 18. století až do současnosti

    Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization

    No full text
    Selected and tested poplar clones are very suitable biomass resources for various applications such as biofuels, the pulp and paper industry as well as chemicals production. In this study, we determined the content of lignin, cellulose, holocellulose, and extractives, syringyl to guaiacyl (S/G) ratio in lignin, and also calculated higher heating values (HHV) among eight examined clones of Populus grown on three different experimental sites. The highest lignin content for all the examined sites was determined in ‘I-214’ and ‘Baka 5’ clones, whereas the highest content of extractives was found in ‘Villafranca’ and ‘Baka 5’ clones. The highest S/G ratio for all the examined sites was determined in ‘Villafranca’ and ‘Agathe F’ clones. The chemical profiles of main wood components, extractives, and the S/G ratio in lignin were also influenced by both the experimental site and the clone × site interaction. Higher heating values, derived from calculations based on the contents of lignin and extractives (or lignin only), were in close agreement with the previously published data. The highest heating values were found for ‘Baka 5’ and ‘I-214’ clones. The optimal method of poplar biomass utilization can be chosen on basis of the lignocellulosics chemical composition and the S/G ratio in lignin
    corecore