204 research outputs found
Magnetic and structural transitions in LaNaFeAs single crystals
LaNaFeAs single crystals have been grown out of an
NaAs flux in an alumina crucible and characterized by measuring magnetic
susceptibility, electrical resistivity, specific heat, as well as single
crystal x-ray and neutron diffraction. LaNaFeAs single
crystals show a structural phase transition from a high temperature tetragonal
phase to a low-temperature orthorhombic phase at T\,=\,125\,K. This
structural transition is accompanied by an anomaly in the temperature
dependence of electrical resistivity, anisotropic magnetic susceptibility, and
specific heat. Concomitant with the structural phase transition, the Fe moments
order along the \emph{a} direction with an ordered moment of
0.7(1)\, at \emph{T}\,=\,5 K. The low temperature stripe
antiferromagnetic structure is the same as that in other
\emph{A}FeAs (\emph{A}\,=\,Ca, Sr, Ba) compounds.
LaNaFeAs provides a new material platform for the
study of iron-based superconductors where the electron-hole asymmetry could be
studied by simply varying La/Na ratio.Comment: 9 pages, 7 figures, to appear in Physical Review
Thin static charged dust Majumdar-Papapetrou shells with high symmetry in D >= 4
We present a systematical study of static D >= 4 space-times of high symmetry
with the matter source being a thin charged dust hypersurface shell. The shell
manifold is assumed to have the following structure S_(beta) X R^(D-2-beta),
beta (in the interval ) is dimension of a sphere S_(beta). In case
of (beta) = 0, we assume that there are two parallel hyper-plane shells instead
of only one. The space-time has Majumdar-Papapetrou form and it inherits the
symmetries of the shell manifold - it is invariant under both rotations of the
S_(beta) and translations along R^(D-2-beta). We find a general solution to the
Einstein-Maxwell equations with a given shell. Then, we examine some flat
interior solutions with special attention paid to D = 4. A connection to D = 4
non-relativistic theory is pointed out. We also comment on a straightforward
generalisation to the case of Kastor-Traschen space-time, i.e. adding a
non-negative cosmological constant to the charged dust matter source.Comment: Accepted in Int. J. Theor. Phy
Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells
Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements
Atmospheric drivers of storage water use in Scots pine
International audienceIn this study we determined the microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L.) growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and ? storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May?18 October). Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation was the main driver of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed, mainly driven by vapour pressure deficit (VPD). During dry atmospheric conditions (high VPD) storage water use was reduced. This reduction was disproportionally higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. A third important factor was the tree water deficit. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water deficit
The influence of herbage on selected parameters of milk and meat quality
Abstract - Yield, botanic composition and chemical analyses of grass and herbage were measured in seven localities with different altitudes between 450 and 900 metres above sea level.
Grass and herbage are the most natural and opti-mal feedstuff for cattle. Grazing management should notably regulate the pasture composition, i.e. support dominance of soft stoloniserous strains of grasses and decrease occurrence of weed and less value strain of gramineous grasses. Grazing in the early growth period supported the development of lower stoloniserous grameous grasses and Trifolium repens. A part of the herbage evaluation was observation milk and meat quality on farms. Due to grazing there were some changes in protein content and protein fraction, although not statistically significant. In graz-ing cows, the part of alfa-lacto-albumin increased.
Grazing had also an influence on slaughter body and meat quality. Low content of nutrients in grazing herbage showed lower fat production, especially lower fat accumulation in ventricles and lower part of intramuscular fat
Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions
Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond
Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games
Probabilistic model checking for stochastic games enables formal verification
of systems that comprise competing or collaborating entities operating in a
stochastic environment. Despite good progress in the area, existing approaches
focus on zero-sum goals and cannot reason about scenarios where entities are
endowed with different objectives. In this paper, we propose probabilistic
model checking techniques for concurrent stochastic games based on Nash
equilibria. We extend the temporal logic rPATL (probabilistic alternating-time
temporal logic with rewards) to allow reasoning about players with distinct
quantitative goals, which capture either the probability of an event occurring
or a reward measure. We present algorithms to synthesise strategies that are
subgame perfect social welfare optimal Nash equilibria, i.e., where there is no
incentive for any players to unilaterally change their strategy in any state of
the game, whilst the combined probabilities or rewards are maximised. We
implement our techniques in the PRISM-games tool and apply them to several case
studies, including network protocols and robot navigation, showing the benefits
compared to existing approaches
Magnonic Weyl states in Cu2OSeO3
The multiferroic ferrimagnet CuOSeO with a chiral crystal structure
attracted a lot of recent attention due to the emergence of magnetic skyrmion
order in this material. Here, the topological properties of its magnon
excitations are systematically investigated by linear spin-wave theory and
inelastic neutron scattering. When considering Heisenberg exchange interactions
only, two degenerate Weyl magnon nodes with topological charges 2 are
observed at high-symmetry points. Each Weyl point splits into two as the
symmetry of the system is further reduced by including into consideration the
nearest-neighbor Dzyaloshinsky-Moriya interaction, crucial for obtaining an
accurate fit to the experimental spin-wave spectrum. The predicted topological
properties are verified by surface state and Chern number analysis.
Additionally, we predict that a measurable thermal Hall conductivity can be
associated with the emergence of the Weyl points, the position of which can be
tuned by changing the crystal symmetry of the material
Long-range magnetic order in CePdAl enabled by orthorhombic deformation
We investigate the effect of structural deformation on the magnetic
properties of orthorhombic CePdAl in relation to its tetragonal polymorph.
Utilizing x-ray and neutron diffraction we establish that the crystal structure
has the space group symmetry and exhibits pseudo-tetragonal twinning.
According to density-functional calculations the tetragonal-orthorhombic
deformation mechanism has its grounds in relatively small free enthalpy
difference between the polymorphs, allowing either phase to be quenched and
fully accounts for the twinned microstructure of the orthorhombic phase.
Neutron diffraction measurements show that orthorhombic CePdAl establishes
long-range magnetic order below =5.29 (5) K characterized by a
collinear, antiferromagnetic arrangement of magnetic moments. Magnetic
anisotropies of orthorhombic CePdAl arise from strong spin-orbit coupling
as evidenced by the crystal-field splitting of the multiplet, fully
characterised with neutron spectroscopy. We discuss the potential mechanism of
frustration posed by antiferromagnetic interactions between nearest neighbours
in the tetragonal phase, which hinders the formation of long-range magnetic
order in tetragonal CePdAl. We propose that orthorhombic deformation
releases the frustration and allows for long-range magnetic order.Comment: Finalized paper from the splitting of arxiv.org/abs/2106.08194v
- …