81 research outputs found

    Do fishers follow fish displaced by climate warming?

    Get PDF
    Climate change is associated with altered oceanographic conditions that tend to shift the geographical distributions of fish. To assess the impact of climate change on fisheries, one must go beyond projections of catch potential and understand how fishers respond to moving target species. Many previous studies have explicitly or implicitly assumed that fishers follow fish that are displaced by climate warming. Here, we evaluate this assumption by analyzing a long-term, large-scale yet high-resolution dataset combined with a detailed oceanographic model. Our study case is the Atlantic cod (Gadhus morhua) fishery in Norway, one of the largest whitefish fisheries in the world, with little technological or judicial constraints on the potential spatial response of fishers. An oceanographic model is used to predict the areas that have been suitable for Atlantic cod spawning over the two last decades. We compare whether these areas overlap with actually observed fishing locations. While the areas that are suitable for spawning clearly predict how much fish are caught per trip, the suitability of an area does not predict how many vessels fish in a given area at a given point in time. In contrast, the number of vessels in the previous week and the previous year explain the current number of vessels in that area. Hence, future projections of climate change effects should account for the rich and nuanced behavioral responses of humans to project climate change effects on fisheries

    Empirical evidence of non-linearity in bottom-up effect in a marine predator-prey system

    Get PDF
    Strength of species interaction may have profound effects on population dynamics. Empirical estimates of interaction strength is often based on the assumption that the interaction strengths are constant. Barents Sea cod and capelin are two fish populations for which such interaction has been acknowledged and used, under the assumption of constant interaction strength, when studying their population dynamics. However, species interaction can often be non-linear in marine ecosystems and might profoundly change our understanding of food chains. Analysing 37 years long survey time series in the Arcto-Boreal Barents Sea with a state-space modelling framework, we demonstrate that the effect of capelin on cod is not linear but shifts depending on capelin abundance: while capelin is beneficial for cod population at high abundance, below the threshold, it becomes less important for cod. Our analysis therefore shows the importance of investigating non-linearity in species interaction and may contribute to an improved understanding on species assemblages.Empirical evidence of non-linearity in bottom-up effect in a marine predator-prey systempublishedVersionPaid open acces

    Empirical evidence of nonlinearity in bottom up effect in a marine predator-prey system

    Get PDF
    Strength of species interaction may have profound effects on population dynamics. Empirical estimates of interaction strength is often based on the assumption that the interaction strengths are constant. Barents Sea cod and capelin are two fish populations for which such interaction has been acknowledged and used, under the assumption of constant interaction strength, when studying their population dynamics. However, species interaction can often be non-linear in marine ecosystems and might profoundly change our understanding of food chains. Analysing 37 years long survey time series in the Arcto-Boreal Barents Sea with a state-space modelling framework, we demonstrate that the effect of capelin on cod is not linear but shifts depending on capelin abundance: while capelin is beneficial for cod population at high abundance, below the threshold, it becomes less important for cod. Our analysis therefore shows the importance of investigating non-linearity in species interaction and may contribute to an improved understanding on species assemblages.Empirical evidence of nonlinearity in bottom up effect in a marine predator-prey systemacceptedVersionpublishedVersio

    Management strategies can buffer the effect of mass mortality in early life stages of fish

    Get PDF
    Mass mortality (MM) events affecting early life stages of fish can have strong and long-term consequences for population abundance and demography as well as the economic activity supported by exploited stocks. Adaptive fishery management may help mitigate economic impacts and ensure sustainable resource use following a MM event. Using a state-space life cycle model, we simulated ‘what-if’ scenarios of MM on Northeast Arctic cod (Gadus morhua) eggs and larvae. We compared the expected catches, total stock biomass (TSB), and interannual variability in catches over a period of 10 years after the simulated disturbance. We further evaluated a range of management mitigation strategies, namely reductions in fishing mortality of varying duration (1–10 years) and intensity (no fishing reduction to full ban). A large range of reductions in fishing led to an increase in expected catches over 10 years compared to no reductions, especially when applied immediately after the perturbation and when the cod population was characterized by a high mean age and high TSB. Severe fishing reductions can increase catches substantially but are associated with high interannual variability. Fishing reductions of moderate intensity applied between 1 and 4 years would allow to increase catches with only a slight increase in interannual variability. Our findings demonstrate the potential benefits of an adaptive approach to fisheries management and highlight that mitigation actions may ensure the sustainable exploitation of fish stocks in the wake of unexpected disturbances. Synthesis and application. Mass mortality events during early life stages of fish can potentially have substantial and long-term effects on the population. Mitigation is more efficient when the affected population has a diverse age structure and when the mitigation strategy is applied immediately after the perturbation. Severe reduction in fishing mortality is an efficient measure to increase the expected average catch but is associated with high interannual variability. Fishing reduction of moderate intensity applied during 1–4 years after the event also increases the expected average catch with only slightly higher interannual variability in catches.publishedVersio

    Assessing the patchiness of early life stage of a fish stock (Gadus morhua) and its contribution to the stock recruitment

    Get PDF
    Patchiness, defined as spatial heterogeneity in distribution of organisms, is a common phenomenon in zooplankton including ichtyoplankton. In heterogeneous landscapes, depending on the scale of prey and predatory distributions, individuals in patches may experience distinct differences in the survival rate compared to individuals distributed more homogeneously outside patches. In this study, we focused on drifting eggs and larvae of Northeast Arctic (NEA) cod, one of the largest exploited fish stock in the world. The eggs and larvae are largely distributed along the north-western coast of Norway and northern Russia. We ask to what degree individuals are located in patches contribute to the species recruitment. For this purpose, we developed a patch recognition method to detect the existence of patches in particle tracking simulations using a connected-component labeling algorithm. We then assessed the contribution of individuals in detected patches to the total recruitment. Our results showed that depending on year, day of year, and resolution scale for detection of patches, recruits present in patches can vary between 0.6% and 38.7% with an average of 20.4% of total recruitment. The percentage decreased with increasing day of year in the drifting season but increased with decreasing patch resolution scale, down to the finest investigated scale of 8 km. On the basis of these results, we advise field recruitment studies of NEA cod to at least resolve an 8-km spatial scale to capture effects of spatial heterogeneity in the survival rate on the species recruitment.publishedVersio

    Fitness consequences of early life conditions and maternal size effects in a freshwater top predator

    Get PDF
    1. Conditions experienced in early life stages can be an important determinant of individual life histories. In fish, environmental conditions are known to affect early survival and growth, but recent studies have also emphasized maternal effects mediated by size or age. However, the relative sensitivity of the mean fitness (population growth rate λ) to different early life impacts remain largely unexplored. 2. Using a female-based integral projection model (IPM) parameterised from unique long-term demographic data for pike (Esox lucius), we evaluated the relative fitness consequences of different early life impacts, including i) maternal effects of length on egg weight, potentially affecting offspring (first year) survival, and ii) effects of temperature on offspring growth and survival. Of the seven vital rates defining the model, offspring survival could not be directly estimated and four scenarios were defined for this rate. 3. Elasticity analyses of the IPM were performed to calculate i) the total contribution from different lengths to the elasticity of λ to the projection kernel, and ii) the elasticity of λ to underlying variables of female current length, female offspring length at age 1, and temperature. These elasticities were decomposed into contributions from different vital rates across length. 4. Egg weight increased with female length, as expected, but the effect leveled off for the largest females. However, λ was largely insensitive to this effect, even when egg weight was assumed to have a strong effect on offspring survival. In contrast, λ was sensitive to early temperature conditions through growth and survival. Among mature females, the total elasticity of λ to the projection kernel generally increased with length. The results were robust to a wide range of assumptions. 5. These results suggest that environmental conditions experienced in early life represent a more important driver of mean population growth and fitness of pike than maternal effects of size on offspring survival.We discuss two general mechanisms underlying the weak influence of this maternal effect, suggesting that these may be general for long-lived and highly fecund fishes. This model and results are relevant for management of long-lived top-predators, including many commercially important fish species

    Predator-prey interactions cause apparent competition between marine zooplankton groups

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Ecology 99 (2018): 632-641, doi:10.1002/ecy.2126.Predator-mediated apparent competition is an indirect negative interaction between two prey species mediated by a shared predator. Quantifying such indirect ecosystem effects is methodologically challenging but important for understanding ecosystem functioning. Still, there are few examples of apparent competition from pelagic marine environments. Using state-space statistical modelling, we here provide evidence for apparent competition between two dominant zooplankton groups in a large marine ecosystem, i.e., krill and copepods in the Barents Sea. This effect is mediated by a positive association between krill biomass and survival of the main planktivorous fish in the Barents Sea, capelin Mallotus villosus, and a negative association between capelin and copepod biomasses. The biomass of Atlantic krill species is expected to increase in the Barents Sea due to ongoing climate change, thereby potentially negatively affecting copepods through apparent competition. By demonstrating and quantifying apparent competition in a large marine ecosystem, our study paves the way for more realistic projections of indirect ecosystem effects of climate change and harvesting.This study was funded by the Nordforsk-funded project Green Growth Based on Marine Resources: Ecological and Socio-Economic Constraints (GreenMAR) and by the Research Council of Norway (Projects 244647/E10 and 255487/E40)

    Egg mortality of Northeast Arctic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus)

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in ICES Journal of Marine Science following peer review. The definitive publisher-authenticated version ICES J. Mar. Sci. (2013) is available online at: http://dx.doi.org/10.1093/icesjms/fst00

    Large annual variation in the amount of skipped spawning for female Northeast Arctic haddock Melanogrammus aeglefinus

    Get PDF
    Although the phenomenon of skipped spawning has been described in numerous fishes, time-series are scarce. We used the presence of post-ovulatory follicles in histological gonad slides from females not developing oocytes for Northeast Arctic (NEA) haddock Melanogrammus aeglefinus from 2009 to 2012 to construct a length-based statistical model giving the probability that a non - developing female was skipping spawning, as opposed to not being sexually mature. This model was then applied on demographic winter survey data from the Barents Sea from 1989 to 2014. This indicated large annual variation in skipping numbers. Comparing these survey estimates to the total annual ICES stock numbers, we found that skipping peaked in the years 1994–1996 and 2009–2014, when the median yearly estimate of skipped spawners was 20–45 % of all females aged ≥ 3 years. In contrast, only ∼ 3 % of females at age ≥ 3 years skipped spawning in 2007. The proportional representation of skipped spawners at the stock level appeared linked to stock energy reserves with more skipping occurring when energy levels were low. Skipping also became more frequent with increasing population age, i.e. when immatures were less abundant, although the very largest/oldest fish tended to spawn. Because the proportion of NEA haddock that skips spawning is variable and can be high, understanding variation in this phenomenon and its drivers may improve population dynamic models.publishedVersio

    Combined effects of fishing and oil spills on marine fish: Role of stock demographic structure for offspring overlap with oil

    Get PDF
    It has been proposed that the multiple pressures of fishing and petroleum activities impact fish stocks in synergy, as fishing-induced demographic changes in a stock may lead to increased sensitivity to detrimental effects of acute oil spills. High fishing pressure may erode the demographic structure of fish stocks, lead to less diverse spawning strategies, and more concentrated distributions of offspring in space and time. Hence an oil spill may potentially hit a larger fraction of a year-class of offspring. Such a link between demographic structure and egg distribution was recently demonstrated for the Northeast Arctic stock of Atlantic cod for years 1959–1993. We here estimate that this variation translates into a two-fold variation in the maximal proportion of cod eggs potentially exposed to a large oil spill. With this information it is possible to quantitatively account for demographic structure in prospective studies of population effects of possible oil spills.acceptedVersio
    • …
    corecore