36 research outputs found

    Local Calcium Elevation and Cell Elongation Initiate Guided Motility in Electrically Stimulated Osteoblast-Like Cells

    Get PDF
    BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF) are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm) and weak (< or = 5 V/cm) dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs) are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological rearrangements underlying EF-guided migration of osteoblast-like cell types and reveal a requirement for calcium in these reactions. We show for the first time here that dcEFs trigger different patterns of intracellular calcium elevation and positional shifting in osteogenic cell types that migrate in opposite directions

    Distributed control and navigation system for quadrotor UAVs in GPS-denied environments

    Full text link
    The problem of developing distributed control and navigation system for quadrotor UAVs operating in GPS-denied environments is addressed in the paper. Cooperative navigation, marker detection and mapping task solved by a team of multiple unmanned aerial vehicles is chosen as demo example. Developed intelligent control system complies with on 4D\RCS reference model and its implementation is based on ROS framework. Custom implementation of EKF-based map building algorithm is used to solve marker detection and map building task.Comment: Camera-ready as submitted (and accepted) to the 7th IEEE International Conference Intelligent Systems IS'2014, September 24-26, 2014, Warsaw, Polan

    Early bioelectric activities mediate redox-modulated regeneration

    Full text link
    Reactive oxygen species (ROS) and electric currents modulate regeneration; however, the interplay between biochemical and biophysical signals during regeneration remains poorly understood. We investigate the interactions between redox and bioelectric activities during tail regeneration in Xenopus laevis tadpoles. We show that inhibition of NADPH oxidase-mediated production of ROS, or scavenging or blocking their diffusion into cells, impairs regeneration and consistently regulates the dynamics of membrane potential, transepithelial potential (TEP) and electric current densities (J(I)) during regeneration. Depletion of ROS mimics the altered TEP and J(I) observed in the non-regenerative refractory period. Short-term application of hydrogen peroxide (H(2)O(2)) rescues (from depleted ROS) and induces (from the refractory period) regeneration, TEP increase and J(I) reversal. H(2)O(2) is therefore necessary for and sufficient to induce regeneration and to regulate TEP and J(I). Epistasis assays show that voltage-gated Na(+) channels act downstream of H(2)O(2) to modulate regeneration. Altogether, these results suggest a novel mechanism for regeneration via redox-bioelectric orchestration
    corecore