9 research outputs found

    Novel Alu retrotransposon insertion leading to Alström syndrome.

    No full text
    Alström syndrome is a clinically complex disorder characterized by childhood retinal degeneration leading to blindness, sensorineural hearing loss, obesity, type 2 diabetes mellitus, cardiomyopathy, systemic fibrosis, and pulmonary, hepatic, and renal failure. Alström syndrome is caused by recessively inherited mutations in the ALMS1 gene, which codes for a putative ciliary protein. Alström syndrome is characterized by extensive allelic heterogeneity, however, founder effects have been observed in some populations. To date, more than 100 causative ALMS1 mutations have been identified, mostly frameshift and non-sense alterations resulting in termination signals in ALMS1. Here, we report a complex Turkish kindred in which sequence analysis uncovered an insertion of a novel 333 basepair Alu Ya5 SINE retrotransposon in the ALMS1 coding sequence, a previously unrecognized mechanism underlying the mutations causing Alström syndrome. It is extraordinarily rare to encounter the insertion of an Alu retrotransposon in the coding sequence of a gene. The high frequency of the mutant ALMS1 allele in this isolated population suggests that this recent retrotransposition event spreads quickly, and may be used as a model to study the population dynamics of deleterious alleles in isolated communities

    A T(5;16) Translocation Is The Likely Driver Of A Syndrome With Ambiguous Genitalia, Facial Dysmorphism, Intellectual Disability, And Speech Delay

    No full text
    Genetic studies grounded on monogenic paradigms have accelerated both gene discovery and molecular diagnosis. At the same time, complex genomic rearrangements are also appreciated as potent drivers of disease pathology. Here, we report two male siblings with a dysmorphic face, ambiguous genitalia, intellectual disability, and speech delay. Through quad-based whole-exome sequencing and concomitant molecular cytogenetic testing, we identified two copy-number variants (CNVs) in both affected individuals likely arising from a balanced translocation: a 13.5-Mb duplication on Chromosome 16 (16q23.1 → 16qter) and a 7.7-Mb deletion on Chromosome 5 (5p15.31 → 5pter), as well as a hemizygous missense variant in CXorf36 (also known as DIA1R). The 5p terminal deletion has been associated previously with speech delay, whereas craniofacial dysmorphia and genital/urinary anomalies have been reported in patients with a terminal duplication of 16q. However, dosage changes in either genomic region alone could not account for the overall clinical presentation in our family; functional testing of CXorf36 in zebrafish did not induce defects in neurogenesis or the craniofacial skeleton. Notably, literature and database analysis revealed a similar dosage disruption in two siblings with extensive phenotypic overlap with our patients. Taken together, our data suggest that dosage perturbation of genes within the two chromosomal regions likely drives the syndromic manifestations of our patients and highlight how multiple genetic lesions can contribute to complex clinical pathologies.PubMe

    TRAPPC6B biallelic variants cause a neurodevelopmental disorder with TRAPP II and trafficking disruptions

    No full text
    Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C&gt;T, p.Q152∗) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C&gt;T, p.Q152∗) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.</p

    TRAPPC6B biallelic variants cause a neurodevelopmental disorder with TRAPP II and trafficking disruptions

    No full text
    Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified 7 homozygous nonsense (n = 12 patients) and 8 canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy, and absent expressive language. Movement disorders including stereotypies, spasticity, and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum, and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C > T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C > T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function

    TRAPPC6B biallelic variants cause a neurodevelopmental disorder with TRAPP II and trafficking disruptions

    No full text
    Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C&gt;T, p.Q152∗) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C&gt;T, p.Q152∗) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.</p

    The phanerozoic palaeotectonics of Turkey. Part I: an inventory

    No full text
    corecore