241 research outputs found

    Impact of Boundary Conditions on Entrainment and Transport in Gravity Currents

    Get PDF
    Gravity currents have been studied numerically and experimentally both in the laboratory and in the ocean. The question of appropriate boundary conditions is still challenging for most complex flows. Gravity currents make no exception - appropriate, physically and mathematically sound boundary conditions are yet to be found. This task is further complicated by the technical limitations imposed by the current oceanographic techniques. In this paper, we make a first step toward a better understanding of the impact of boundary conditions on gravity currents. Specifically, we use direct numerical simulations to investigate the effect that the popular Neumann, and less popular Dirichlet boundary conditions on the bottom continental shelf have on the entrainment and transport of gravity currents. The finding is that gravity currents under these two different boundary conditions differ most in the way they transport heat from the top towards the bottom. This major difference occurs at medium temperature ranges. Entrainment and transport at high temperatures also show significant differences

    Predictability of Lagrangian particle trajectories: Effects of smoothing of the underlying Eulerian flow

    Get PDF
    The increasing realism of ocean circulation models is leading to an increasing use of Eulerian models as a basis to compute transport properties and to predict the fate of Lagrangian quantities. There exists, however, a significant gap between the spatial scales of model resolution and that of forces acting on Lagrangian particles. These scales may contain high vorticity coherent structures that are not resolved due to computational issues and/or missing dynamics and are typically suppressed by smoothing operators. In this study, the impact of smoothing of the Eulerian fields on the predictability of Lagrangian particles is first investigated by conducting twin experiments that involve release of clusters of synthetic Lagrangian particles into true (unmodified) and model (smoothed) Eulerian fields, which are generated by a QG model with a flow field consisting of many turbulent coherent structures. The Lagrangian errors induced by Eulerian smoothing errors are quantified by using two metrics, the difference between the centers of mass (CM) of particle clusters, ρ, and the difference between scattering of particles around the center of mass, s. The results show that the smoothing has a strong effect on the CM behavior, while the scatter around it is only partially affected. The QG results are then compared to results obtained from a multi-particle Lagrangian Stochastic Model (LSM) which parameterizes turbulent flow using main flow characteristics such as mean flow, velocity variance and Lagrangian time scale. In addition to numerical results, theoretical results based on the LSM are also considered, providing asymptotics of ρ, s and predictability time. It is shown that both numerical and theoretical LSM results for the center of mass error (ρ) provide a good qualitative description, and a quantitatively satisfactory estimate of results from QG experiments. The scatter error (s) results, on the other hand, are only qualitatively reproduced by the LSM

    A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain

    Get PDF
    The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase

    The inertial dynamics of thin film flow of non-Newtonian fluids

    Get PDF
    Consider the flow of a thin layer of non-Newtonian fluid over a solid surface. I model the case of a viscosity that depends nonlinearly on the shear-rate; power law fluids are an important example, but the analysis here is for general nonlinear dependence. The modelling allows for large changes in film thickness provided the changes occur over a large enough lateral length scale. Modifying the surface boundary condition for tangential stress forms an accessible base for the analysis where flow with constant shear is a neutral critical mode, in addition to a mode representing conservation of fluid. Perturbatively removing the modification then constructs a model for the coupled dynamics of the fluid depth and the lateral momentum. For example, the results model the dynamics of gravity currents of non-Newtonian fluids even when the flow is not very slow

    A new parameterization for entrainment in overflows

    Get PDF
    Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1835–185, doi:10.1175/2010JPO4374.1.Dense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.Support was given by the National Science Foundation Project OCE-0350891 and OCE-0726339

    Submesoscale dispersion in the vicinity of the Deepwater Horizon spill

    Full text link
    Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 meters to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. \textcolor{black} {Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200m-50km scales and clearly indicate that dispersion at the submesoscales is \textit{local}, driven predominantly by energetic submesoscale fluctuations.} The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure

    Seasonal and regional characterization of horizontal stirring in the global ocean

    Get PDF
    Recent work on Lagrangian descriptors has shown that Lyapunov Exponents can be applied to observed or simulated data to characterize the horizontal stirring and transport properties of the oceanic flow. However, a more detailed analysis of regional dependence and seasonal variability was still lacking. In this paper, we analyze the near-surface velocity field obtained from the Ocean general circulation model For the Earth Simulator (OFES) using Finite-Size Lyapunov Exponents (FSLE). We have characterized regional and seasonal variability. Our results show that horizontal stirring, as measured by FSLEs, is seasonally-varying, with maximum values in Summer time. FSLEs also strongly vary depending on the region: we have first characterized the stirring properties of Northern and Southern Hemispheres, then the main oceanic basins and currents. We have finally studied the relation between averages of FSLE and some Eulerian descriptors such as Eddy Kinetic Energy (EKE) and vorticity (w) over the different regions.Comment: 32 pages, 7 figure

    Oceanic three-dimensional Lagrangian Coherent Structures: A study of a mesoscale eddy in the Benguela ocean region

    Get PDF
    We study three dimensional oceanic Lagrangian Coherent Structures (LCSs) in the Benguela region, as obtained from an output of the ROMS model. To do that we first compute Finite-Size Lyapunov exponent (FSLE) fields in the region volume, characterizing mesoscale stirring and mixing. Average FSLE values show a general decreasing trend with depth, but there is a local maximum at about 100 m depth. LCSs are extracted as ridges of the calculated FSLE fields. They present a "curtain-like" geometry in which the strongest attracting and repelling structures appear as quasivertical surfaces. LCSs around a particular cyclonic eddy, pinched off from the upwelling front are also calculated. The LCSs are confirmed to provide pathways and barriers to transport in and out of the eddy

    A Regional Modeling Study of the Entraining Mediterranean Outflow

    Get PDF
    [1] We have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cadiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number-dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cadiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number-dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the freshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity
    corecore