667 research outputs found
Superheated water extraction of essential oils of Origanum micranthum
Superheated water extraction is used to extract essential oil of leaves of Origanum micranthum. The effect of different temperatures on the essential oil profile and rate of extraction as a function of time is investigated. The components of essential oil of Origanum micranthum are removed from the aqueous extract by C18 solid-phase extraction. The identification of components is carried out using comprehensive gas chromatography-time of flight-mass spectrometry. The number of extracted components is almost the same; however, the concentrations change with changing temperature. The highest yield (0.64%) is found at a temperature of 150°C, 2 mL/min and 60 bar for 30 min. The increasing temperature from 100°C to 175°C increased the rate of extraction of six selected components of essential oil of Origanum micranthum. cis-Sabinenehydrate exhibits the fastest rate of extraction at all temperatures studied. Some degradation products are observed at a temperature of 175°C
Spectroscopic Constraints on the Surface Magnetic Field of the Accreting Neutron Star EXO 0748-676
Gravitationally redshifted absorption lines of Fe XXVI, Fe XXV, and O VIII
were inferred recently in the X-ray spectrum of the bursting neutron star EXO
0748-676. We place an upper limit on the stellar magnetic field based on the
iron lines. The oxygen absorption feature shows a multiple component profile
that is consistent with Zeeman splitting in a magnetic field of ~(1-2)x10^9
gauss, and for which the corresponding Zeeman components of the iron lines are
expected to be blended together. In other systems, a field strength >5x10^{10}
gauss could induce a blueshift of the line centroids that would counteract
gravitational redshift and complicate the derivation of constraints on the
equation of state of the neutron star.Comment: 5 pages, submitted to Phys. Rev. Let
Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials
The aim of this study is to improve the general understanding of tungsten carbide (WC–Co) tool wear under dry machining of the hard-to-cut titanium alloy Ti6Al4V. The chosen approach includes experimental and numerical tests. The experimental part is designed to identify wear mechanisms using cutting force measurements, scanning electron microscope observations and optical profilometer analysis. Machining tests were conducted in the orthogonal cutting framework and showed a strong evolution of the cutting forces and the chip profiles with tool wear. Then, a numerical method has been used in order to model the machining process with both new and worn tools. The use of smoothed particle hydrodynamics model (SPH model) as a numerical tool for a better understanding of the chip formation with worn tools is a key aspect of this work. The redicted chip morphology and the cutting force evolution with respect to the tool wear are qualitatively compared with experimental trends. The chip formation mechanisms during dry cutting process are shown to be quite dependent from the worn tool geometry. These mechanisms explain the high variation of the experimental and numerical feed force between new and worn tools
Chandra and RXTE Observations of 1E 1547.0-5408: Comparing the 2008 and 2009 Outbursts
We present results from observations of the magnetar 1E 1547.0-5408 (SGR
J1550-5418) taken with the Chandra X-ray Observatory and the Rossi X-ray Timing
Explorer (RXTE) following the source's outbursts in 2008 October and 2009
January. During the time span of the Chandra observations, which covers days 4
through 23 and days 2 through 16 after the 2008 and 2009 events, respectively,
the source spectral shape remained stable, while the pulsar's spin-down rate in
the same span in 2008 increased by a factor of 2.2 as measured by RXTE. The
lack of spectral variation suggests decoupling between magnetar spin-down and
radiative changes, hence between the spin-down-inferred magnetic field strength
and that inferred spectrally. We also found a strong anti-correlation between
the phase-averaged flux and the pulsed fraction in the 2008 and 2009 Chandra
data, but not in the pre-2008 measurements. We discuss these results in the
context of the magnetar model.Comment: 4 figures, accepted for publication in Ap
Bulk viscosity in the nonlinear and anharmonic regime of strange quark matter
The bulk viscosity of cold, dense three-flavor quark matter is studied as a
function of temperature and the amplitude of density oscillations. The study is
also extended to the case of two different types of anharmonic oscillations of
density. We point several qualitative effects due to the anharmonicity,
although quantitatively they appear to be relatively small. We also find that,
in most regions of the parameter space, with the exception of the case of a
very large amplitude of density oscillations (i.e. 10% and above), nonlinear
effects and anharmonicity have a small effect on the interplay of the
nonleptonic and semileptonic processes in the bulk viscosity.Comment: 14 pages, 6 figures; v2: Appendix B is omitted, a few new discussions
added and some new references adde
EXO 0748-676 Rules out Soft Equations of State for Neutron Star Matter
The interiors of neutron stars contain matter at very high densities, in a
state that differs greatly from those found in the early universe or achieved
at terrestrial experiments. Matter in these conditions can only be probed
through astrophysical observations that measure the mass and radius of neutron
stars with sufficient precision. Here I report for the first time a unique
determination of the mass and radius of the neutron star EXO 0748-676, which
appears to rule out all the soft equations of state of neutron star matter. If
this object is typical, then condensates and unconfined quarks do not exist in
the centers of neutron stars.Comment: To appear in Nature, press embargo until publicatio
Quark matter in compact stars?
Ozel, in a recent reanalysis of EXO 0748-676 observational data
(astro-ph/0605106), concluded that quark matter probably does not exist in the
center of compact stars. We show that the data is actually consistent with the
presence of quark matter in compact stars.Comment: 4 pages, LaTeX; New title and overall rewrite to reflect version
published in Nature. Conclusions unchange
- …