5 research outputs found

    Biotransformation of Chemicals at the Water–Sediment Interface─Toward a Robust Simulation Study Setup

    Full text link
    Studying aquatic biotransformation of chemicals in laboratory experiments, i.e., OECD 308 and OECD 309 studies, is required by international regulatory frameworks to prevent the release of persistent chemicals into natural water bodies. Here, we aimed to address several previously described shortcomings of OECD 308/309 studies regarding their variable outcomes and questionable environmental relevance by broadly testing and characterizing a modified biotransformation test system in which an aerated water column covers a thin sediment layer. Compared to standard OECD 308/309 studies, the modified system showed little inter-replicate variability, improved observability of biotransformation, and consistency with first-order biotransformation kinetics for the majority of 43 test compounds, including pharmaceuticals, pesticides, and artificial sweeteners. To elucidate the factors underlying the decreased inter-replicate variability compared to OECD 309 outcomes, we used multidimensional flow cytometry data and a machine learning-based cell type assignment pipeline to study cell densities and cell type diversities in the sediment and water compartments. Our here presented data on cell type composition in both water and sediment allows, for the first time, to study the behavior of microbial test communities throughout different biotransformation simulation studies. We found that sediment-associated microbial communities were generally more stable throughout the experiments and exhibited higher cell type diversity than the water column-associated communities. Consistently, our data indicate that aquatic biotransformation of chemicals can be most robustly studied in test systems providing a sufficient amount of sediment-borne biomass. While these findings favor OECD 308-type systems over OECD 309-type systems to study biotransformation at the water–sediment interface, our results suggest that the former should be modified toward lower sediment–water ratios to improve observability and interpretability of biotransformation. KEYWORDS- biotransformation micropollutants chemical persistence water−sediment systems phenotypic microbial community composition cell type diversity OECD 308/309 studie

    Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa

    Get PDF
    In eThekwini, South Africa, the production of agricultural fertilizers from human urine collected from urine-diverting dry toilets is being evaluated at a municipality scale as a way to help finance a decentralized, dry sanitation system. The present study aimed to assess a range of human and environmental health hazards in source-separated urine, which was presumed to be contaminated with feces, by evaluating the presence of human pathogens, pharmaceuticals, and an antibiotic resistance gene. Composite urine samples from households enrolled in a urine collection trial were obtained from urine storage tanks installed in three regions of eThekwini. Polymerase chain reaction (PCR) assays targeted 9 viral and 10 bacterial human pathogens transmitted by the fecal-oral route. The most frequently detected viral pathogens were JC polyomavirus, rotavirus, and human adenovirus in 100%, 34% and 31% of samples, respectively. Aeromonas spp. and Shigella spp. were frequently detected gram negative bacteria, in 94% and 61% of samples, respectively. The gram positive bacterium, Clostridium perfringens, which is known to survive for extended times in urine, was found in 72% of samples. A screening of 41 trace organic compounds in the urine facilitated selection of 12 priority pharmaceuticals for further evaluation. The antibiotics sulfamethoxazole and trimethoprim, which are frequently prescribed as prophylaxis for HIV-positive patients, were detected in 95% and 85% of samples, reaching maximum concentrations of 6800 µg/L and 1280 µg/L, respectively. The antiretroviral drug emtricitabine was also detected in 40% of urine samples. A sulfonamide antibiotic resistance gene (sul1) was detected in 100% of urine samples. By coupling analysis of pathogens and pharmaceuticals in geographically dispersed samples in eThekwini, this study reveals a range of human and environmental health hazards in urine intended for fertilizer production. Collection of urine offers the benefit of sequestering contaminants from environmental release and allows for targeted treatment of potential health hazards prior to agricultural application. The efficacy of pathogen and pharmaceutical inactivation, transformation or removal during urine nutrient recovery processes is thus briefly reviewed

    Removal of pharmaceuticals from human urine during storage, aerobic biological treatment, and activated carbon adsorption to produce a safe fertilizer

    Get PDF
    Urine has great potential to be an effective fertilizer due to its high nutrient content, however, it can contain potentially worrying pharmaceuticals. Our objective was to study whether urine storage and aerobic biological treatment, i.e. nitrification, was sufficient to remove pharmaceuticals or an additional treatment with activated carbon was necessary to produce a fertilizer from urine. We investigated the abatement of twelve pharmaceuticals, including antibiotics and antivirals, in laboratory experiments representing the treatment steps of anaerobic storage of source-separated human urine, stabilization using partial and full nitrification under acclimatized and non-acclimatized conditions, and treatment of nitrified urine using powdered activated carbon (PAC). Two-month-long-term storage of urine was insufficient to substantially degrade the pharmaceuticals, except for hydrochlorothiazide (>90%). In the partial and full nitrification fed-batch reactors, atazanavir, ritonavir, and clarithromycin were rapidly removed, with biotransformation rate constants greater than 10 L gSS−1d−1. Darunavir, emtricitabine, trimethoprim, N4-acetylsulfamethoxazole, sulfamethoxazole, atenolol, diclofenac, and hydrochlorothiazide were degraded slowly, with biotransformation rate constants of < 1 L gSS−1d−1. With 200 mg PAC L−1, at least 90% of each investigated pharmaceutical was removed. Yeast estrogen screen tests and bioluminescence inhibition tests revealed efficient removal of estrogenicity (99%) and toxicity (56%) using nitrification, and a reduction of 89% and 64%, respectively, using 200 mg PAC L−1. With our study, we provide biotransformation rate constants of compounds never previously investigated. We also show that a combination of nitrification and PAC adsorption enables the production of a safe fertilizer with sufficiently low pharmaceutical concentrations and no removal of beneficial nutrients.ISSN:0921-3449ISSN:1879-065

    Assessing Antibiotics Biodegradation and Effects at Sub-inhibitory Concentrations by Quantitative Microbial Community Deconvolution

    No full text
    Antibiotics in the environment cause widespread concern as a result of their potent inhibitory action on microbial growth and their role in potentially creating selective conditions for proliferation of antibiotic resistant bacteria. Comprising a carbon skeleton, antibiotics should be amenable to microbial biodegradation, but this is still largely uncharted territory because of their simultaneous strong toxicity. In this study, we estimated potential antibiotics degradation by and effects on mixed microbial communities at concentrations sufficiently high to allow sensitive detection of biomass growth, but simultaneously, low enough to mitigate their toxic action. We used three different mixed inoculum sources freshly derived from freshwater, activated sludge or soil, and tested a series of 15 antibiotics from different classes at 1 mg C-carbon l(-1) dosage. Consistent community growth was observed for freshwater and activated sludge with ampicillin, erythromycin and chloramphenicol, and with sulfomethoxazole for activated sludge, which was accompanied by parent compound disappearance. Community growth could be attributed to a few subclasses of recognized cell types by using supervised machine-learning-based classifiers. Most other tested antibiotics resulted in inhibition of community growth on background assimilable organic carbon, concomitant with altered composition of the resulting communities. We conclude that growth-linked biodegradation of antibiotics at low concentrations may be present among typical environmental microbiota, but for a selected subset only, whereas for the majority of antibiotics negative effects prevail without any sign of productive growth
    corecore