4,872 research outputs found

    Symbolic Synchronization and the Detection of Global Properties of Coupled Dynamics from Local Information

    Full text link
    We study coupled dynamics on networks using symbolic dynamics. The symbolic dynamics is defined by dividing the state space into a small number of regions (typically 2), and considering the relative frequencies of the transitions between those regions. It turns out that the global qualitative properties of the coupled dynamics can be classified into three different phases based on the synchronization of the variables and the homogeneity of the symbolic dynamics. Of particular interest is the {\it homogeneous unsynchronized phase} where the coupled dynamics is in a chaotic unsynchronized state, but exhibits (almost) identical symbolic dynamics at all the nodes in the network. We refer to this dynamical behaviour as {\it symbolic synchronization}. In this phase, the local symbolic dynamics of any arbitrarily selected node reflects global properties of the coupled dynamics, such as qualitative behaviour of the largest Lyapunov exponent and phase synchronization. This phase depends mainly on the network architecture, and only to a smaller extent on the local chaotic dynamical function. We present results for two model dynamics, iterations of the one-dimensional logistic map and the two-dimensional H\'enon map, as local dynamical function.Comment: 21 pages, 7 figure

    Distributed Delays Facilitate Amplitude Death of Coupled Oscillators

    Full text link
    Coupled oscillators are shown to experience amplitude death for a much larger set of parameter values when they are connected with time delays distributed over an interval rather than concentrated at a point. Distributed delays enlarge and merge death islands in the parameter space. Furthermore, when the variance of the distribution is larger than a threshold the death region becomes unbounded and amplitude death can occur for any average value of delay. These phenomena are observed even with a small spread of delays, for different distribution functions, and an arbitrary number of oscillators.Comment: 4 pages, 5 figure

    MACROECONOMIC DETERMINANTS OF RADICAL INNOVATIONS AND INTERNET BANKING IN EUROPE

    Get PDF
    Current technological development has various implications for the bankingsector. Especially, the banks prefer internet banking to keep up their customers, reducetransaction costs, enhance their customers’ portfolio, and accelerate financial transactions.In this regard, this study aims at finding out the use of intensity of internet banking. Extensivetechnological innovation boosts internet banking. Banks use internet services as anaggressive business strategy to gain market share rather than for making profits. Theimportance of the innovation for the banking sector is that the competition forces banks to beinnovative in order to survive in the market. In the macroeconomic level, R&D expenditures,education expenditures, skilled human capital, level of the information and communicationinfrastructure and the accessing the internet by the individuals, patent protection laws, thelevel of the competition in national and international markets, the cost of inputs such asenergy or wages can affect the innovation.Radical Innovation, Internet Banking, Macroeconomy

    Network synchronization: Spectral versus statistical properties

    Full text link
    We consider synchronization of weighted networks, possibly with asymmetrical connections. We show that the synchronizability of the networks cannot be directly inferred from their statistical properties. Small local changes in the network structure can sensitively affect the eigenvalues relevant for synchronization, while the gross statistical network properties remain essentially unchanged. Consequently, commonly used statistical properties, including the degree distribution, degree homogeneity, average degree, average distance, degree correlation, and clustering coefficient, can fail to characterize the synchronizability of networks

    Local pinning of networks of multi-agent systems with transmission and pinning delays

    Get PDF
    We study the stability of networks of multi-agent systems with local pinning strategies and two types of time delays, namely the transmission delay in the network and the pinning delay of the controllers. Sufficient conditions for stability are derived under specific scenarios by computing or estimating the dominant eigenvalue of the characteristic equation. In addition, controlling the network by pinning a single node is studied. Moreover, perturbation methods are employed to derive conditions in the limit of small and large pinning strengths.Numerical algorithms are proposed to verify stability, and simulation examples are presented to confirm the efficiency of analytic results.Comment: 6 pages, 3 figure

    Symbolic dynamics and synchronization of coupled map networks with multiple delays

    Full text link
    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.Comment: 13 pages, 4 figure

    Complex transitions to synchronization in delay-coupled networks of logistic maps

    Full text link
    A network of delay-coupled logistic maps exhibits two different synchronization regimes, depending on the distribution of the coupling delay times. When the delays are homogeneous throughout the network, the network synchronizes to a time-dependent state [Atay et al., Phys. Rev. Lett. 92, 144101 (2004)], which may be periodic or chaotic depending on the delay; when the delays are sufficiently heterogeneous, the synchronization proceeds to a steady-state, which is unstable for the uncoupled map [Masoller and Marti, Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from time-dependent to steady-state synchronization as the width of the delay distribution increases. We also compare the two transitions to synchronization as the coupling strength increases. We use transition probabilities calculated via symbolic analysis and ordinal patterns. We find that, as the coupling strength increases, before the onset of steady-state synchronization the network splits into two clusters which are in anti-phase relation with each other. On the other hand, with increasing delay heterogeneity, no cluster formation is seen at the onset of steady-state synchronization; however, a rather complex unsynchronized state is detected, revealed by a diversity of transition probabilities in the network nodes

    Synchronization in discrete-time networks with general pairwise coupling

    Full text link
    We consider complete synchronization of identical maps coupled through a general interaction function and in a general network topology where the edges may be directed and may carry both positive and negative weights. We define mixed transverse exponents and derive sufficient conditions for local complete synchronization. The general non-diffusive coupling scheme can lead to new synchronous behavior, in networks of identical units, that cannot be produced by single units in isolation. In particular, we show that synchronous chaos can emerge in networks of simple units. Conversely, in networks of chaotic units simple synchronous dynamics can emerge; that is, chaos can be suppressed through synchrony
    corecore