46 research outputs found

    Feedforward and feedback processes in vision

    Get PDF
    [No abstract available

    Visual backward masking: Modeling spatial and temporal aspects

    Get PDF
    In modeling visual backward masking, the focus has been on temporal effects. More specifically, an explanation has been sought as to why strongest masking can occur when the mask is delayed with respect to the target. Although interesting effects of the spatial layout of the mask have been found, only a few attempts have been made to model these phenomena. Here, we elaborate a structurally simple model which employs lateral excitation and inhibition together with different neural time scales to explain many spatial and temporal aspects of backward masking. We argue that for better understanding of visual masking, it is vitally important to consider the interplay of spatial and temporal factors together in one single model

    Motion-based nearest vector metric for reference frame selection in the perception of motion

    Get PDF
    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion.We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects

    A theory of moving form perception: Synergy between masking, perceptual grouping, and motion computation in retinotopic and non-retinotopic representations

    Get PDF
    Because object and self-motion are ubiquitous in natural viewing conditions, understanding how the human visual system achieves a relatively clear perception for moving objects is a fundamental problem in visual perception. Several studies have shown that the visible persistence of a briefly presented stationary stimulus is approximately 120 ms under normal viewing conditions. Based on this duration of visible persistence, we would expect moving objects to appear highly blurred. However, in human vision, objects in motion typically appear relatively sharp and clear. We suggest that clarity of form in dynamic viewing is achieved by a synergy between masking, perceptual grouping, and motion computation across retinotopic and non-retinotopic representations. We also argue that dissociations observed in masking are essential to create and maintain this synergy

    Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions

    Get PDF
    The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness

    What should a quantitative model of masking look like and why would we want it?

    Get PDF
    Quantitative models of backward masking appeared almost as soon as computing technology was available to simulate them; and continued interest in masking has lead to the development of new models. Despite this long history, the impact of the models on the field has been limited because they have fundamental shortcomings. This paper discusses these shortcomings and outlines what future quantitative models should look like. It also discusses several issues about modeling and how a model could be used by researchers to better explore masking and other aspects of cognition

    Visual masking: past accomplishments, present status, future developments

    Get PDF
    Visual masking, throughout its history, has been used as an investigative tool in exploring the temporal dynamics of visual perception, beginning with retinal processes and ending in cortical processes concerned with the conscious registration of stimuli. However, visual masking also has been a phenomenon deemed worthy of study in its own right. Most of the recent uses of visual masking have focused on the study of central processes, particularly those involved in feature, object and scene representations, in attentional control mechanisms, and in phenomenal awareness. In recent years our understanding of the phenomenon and cortical mechanisms of visual masking also has benefited from several brain imaging techniques and from a number of sophisticated and neurophysiologically plausible neural network models. Key issues and problems are discussed with the aim of guiding future empirical and theoretical research

    The reference frame for encoding and retention of motion depends on stimulus set size

    Get PDF
    YesThe goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information

    Postdictive Modulation of Visual Orientation

    Get PDF
    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process
    corecore