12 research outputs found

    Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice

    Get PDF
    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8BAC-EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 348C and low-threshold, robust responses to cooling. The remaining TRPM81 corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 348C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM81 corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear’s basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people.This work was supported by grants FC-15-GRUPIN14–141 (Consejería de Economía y Empleo, Asturias, Spain),Fundación Ramón Areces, Caja Rural de Asturias, SAF2014–54518-C3-2-R, SAF2014– 54518-C3-1-R, SAF2017–83674-C2-2-R, SAF2017–83674-C2-1-R,SAF2016–77233-R (Ministerio de Economía, Industria y Competitividad, Spain and European Regional Development Funds, European Union)“Severo Ochoa” Program for Centers of Excellence in R&D (SEV-2013-0317)

    Identificación molecular y morfodinámica de las fibras sensoriales de frío corneales en el ratón adulto

    Get PDF
    Las terminaciones nerviosas periféricas de las neuronas somatosensoriales primarias que inervan la piel y las mucosas son las estructuras neurales clave en la detección y codificación de las características físicas y/o químicas de los estímulos externos, que son transformadas en señales eléctricas y enviadas al sistema nervioso central, generándose sensaciones conscientes de tacto, calor, frío o dolor. La información sensorial que genera cada tipo de terminación nerviosa viene determinada por la variedad y las características específicas de los canales iónicos implicados en la transducción y codificación del estímulo que contienen. Así, los canales iónicos TRPM8 o Piezo2 son responsables del potencial de receptor en respuesta a descensos de la temperatura ambiental y fuerzas mecánicas, respectivamente. Igualmente, otros canales iónicos dependientes de voltaje, como Nav, Cav y Kv, participan en la generación de los potenciales de acción propagados. El conocimiento actual de los canales iónicos de las neuronas somatosensoriales primarias proviene en gran medida de los experimentos realizados in vitro en el soma de la neurona y no en la terminación nerviosa, lo que no refleja las condiciones en el organismo completo. Las evidentes diferencias morfológicas entre el soma y las terminaciones nerviosas periféricas podrían explicar que la codificación de los estímulos somatosensoriales también sea diferente. Debido a esto, resulta imperativo obtener un conocimiento más detallado de la morfología de las terminaciones nerviosas. Gracias a su transparencia y alta densidad en nervios sensoriales, la córnea supone un excelente modelo experimental para la identificación de diferentes canales iónicos y la caracterización morfométrica dinámica de la inervación somatosensorial, tanto en condiciones fisiológicas como durante la degeneración y regeneración que acontece a la lesión. Por un lado, en este trabajo se realizaron procedimientos inmunohistoquímicos en córneas de ratones adultos, que permitieron la identificación de Piezo2 y Nav1.8 en terminaciones nerviosas periféricas de neuronas trigeminales nociceptoras. También se realizó la caracterización morfológica de las fibras sensoriales que expresan TRPM8, principal transductor de las neuronas termorreceptoras de frío, en el ratón Trpm8BAC-EYFP, que expresa la proteína fluorescente EYFP bajo el promotor del gen Trpm8. En paralelo, se caracterizó el patrón de expresión molecular de estas neuronas, esencial para determinar si poseen un fenotipo típico de neuronas nociceptoras. Se identificaron dos subpoblaciones de neuronas TRPM8+ en base su nivel de expresión, tanto al estudiar los somas en el ganglio trigémino como las fibras nerviosas que inervan la córnea. En dichas neuronas, se halló la expresión de marcadores moleculares propios de los nociceptores, como son el péptido CGRP, el receptor TrkA o los receptores purinérgicos P2X2 y P2X3. Por otro lado, se desarrolló un modelo experimental que permitió la monitorización in vivo a lo largo del tiempo y el posterior análisis morfométrico de las fibras y de sus terminaciones nerviosas en la córnea de ratones Trpm8BAC-EYFP adultos, tanto en condiciones fisiológicas como durante la degeneración y regeneración tras la realización de una lesión. En condiciones fisiológicas, se observó que la mayor parte de las fibras corneales TRPM8-EYFP+ experimentaban cambios morfodinámicos que no suponían un crecimiento o decrecimiento neto a lo largo de 2 semanas en lo que respecta a su longitud acumulada, al volumen que ocupan en el epitelio corneal o a su complejidad, siendo estos cambios de mayor magnitud en aquellas fibras localizadas en regiones centrales de la córnea. También se encontraron diferencias en la dinámica de remodelación de las fibras nerviosas corneales de ratones transgénicos que poseen una deleción genética del canal iónico TRPM8. Los cambios morfodinámicos experimentados por las fibras nerviosas corneales tras su lesión se estudiaron mediante dos aproximaciones experimentales. En la primera de ellas, se realizó una incisión quirúrgica de los nervios estromales de la córnea de ratones Trpm8BAC-EYFP y, a continuación, se realizó un seguimiento in vivo de los cambios morfológicos acontecidos durante las 3 semanas posteriores a la lesión. Se observó una completa degeneración nerviosa en el área lesionada, seguida de una regeneración parcial del conjunto de las fibras axotomizadas al final del periodo de seguimiento. Para la segunda aproximación, se desarrolló un nuevo modelo de lesión nerviosa muy precisa y mínimamente invasiva, basado en la fotocoagulación con un láser de femtosegundo de fibras nerviosas individuales TRPM8-EYFP y en su posterior monitorización y análisis de los cambios morfodinámicos experimentados durante su regeneración. Se encontró que las fibras axotomizadas regeneraban parcialmente, mientras que sus terminaciones nerviosas lo hacían rápidamente y de manera completa. Además, se estudió el papel de la proteína SARM1, esencial en la activación del proceso de degeneración Walleriana, durante la degeneración y regeneración, tras la lesión de los nervios periféricos en el ratón adulto. Hasta la fecha se desconoce la implicación de SARM1 en la regeneración de los axones periféricos. Con el propósito de definir su contribución, se generaron ratones Trpm8BAC-EYFP nulos para la expresión de SARM1, en los que se monitorizó la degeneración de la porción distal y la regeneración de la porción proximal tras la realización de la lesión. Se observó un retraso en la degeneración de la porción distal en el ratón knockout para SARM1, mientras que no se observaron diferencias en la dinámica de regeneración entre el ratón control y el ratón knockout. Estos resultados confirman que SARM1 es un mecanismo molecular intrínseco y específico para la activación de la degeneración Walleriana y, además, sugieren que SARM1 no afecta al proceso de regeneración intrínseca de las fibras nerviosas corneales, lo que apoyaría el uso de una inhibición de SARM1 como posible estrategia terapéutica para el tratamiento de enfermedades neurodegenerativas periféricas

    Role of TRPM8 channels in altered cold sensitivity of corneal primary sensory neurons induced by axonal damage

    Get PDF
    The cornea is extensively innervated by trigeminal ganglion cold thermoreceptor neurons expressing TRPM8 (transient receptor potential cation channel subfamily M member 8). These neurons respond to cooling, hyperosmolarity and wetness of the corneal surface. Surgical injury of corneal nerve fibers alters tear production and often causes dry eye sensation. The contribution of TRPM8-expressing corneal cold-sensitive neurons (CCSNs) to these symptoms is unclear. Using extracellular recording of CCSNs nerve terminals combined with in vivo confocal tracking of reinnervation, Ca2+ imaging and patch-clamp recordings of fluorescent retrogradely labeled corneal neurons in culture, we analyzed the functional modifications of CCSNs induced by peripheral axonal damage in male mice. After injury, the percentage of CCSNs, the cold- and menthol-evoked intracellular [Ca2+] rises and the TRPM8 current density in CCSNs were larger than in sham animals, with no differences in the brake K+ current IKD. Active and passive membrane properties of CCSNs from both groups were alike and corresponded mainly to those of canonical low- and high-threshold cold thermoreceptor neurons. Ongoing firing activity and menthol sensitivity were higher in CCSN terminals of injured mice, an observation accounted for by mathematical modeling. These functional changes developed in parallel with a partial reinnervation of the cornea by TRPM8(+) fibers and with an increase in basal tearing in injured animals compared with sham mice. Our results unveil key TRPM8-dependent functional changes in CCSNs in response to injury, suggesting that increased tearing rate and ocular dryness sensation derived from deep surgical ablation of corneal nerves are due to enhanced functional expression of TRPM8 channels in these injured trigeminal primary sensory neurons.This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants 1161733 (R.M.), 1140520 (J.B.), 1181076 (P.O.), Retos Grants 2017 RSAF2017-83674-C2-1-R and C2-2-R MINECO Spain (C.B. and A.Í.-P), and by the Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD; R.M.). R.P. was supported by FONDECYT Postdoctoral Grant 3170249. MiNICAD is a Millennium Nucleus supported by the Millennium Science Initiative of the Ministry of Economy, Development and Tourism (Chile). The CINV is a Millennium Science Institute funded by the Ministry of Economy, Development and Tourism (Chile). R.M. thanks Pfizer (WI177114) for providing PBMCs and VRIDEI-USACH for support to G.U. and R.P.Peer reviewe

    Location and plasticity of the sodium spike initiation zone in nociceptive terminals in vivo

    No full text
    Referred to by: Sharon R. Ha, Matthew N. Rasband. The SIZ of Pain. Neuron, Volume 102, Issue 4, 22 May 2019, Pages 709-711Nociceptive terminals possess the elements for detecting, transmitting, and modulating noxious signals, thus being pivotal for pain sensation. Despite this, a functional description of the transduction process by the terminals, in physiological conditions, has not been fully achieved. Here, we studied how nociceptive terminals in vivo convert noxious stimuli into propagating signals. By monitoring noxious-stimulus-induced Ca2+ dynamics from mouse corneal terminals, we found that initiation of Na+ channel (Nav)-dependent propagating signals takes place away from the terminal and that the starting point for Nav-mediated propagation depends on Nav functional availability. Acute treatment with the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) resulted in a shift of the location of Nav involvement toward the terminal, thus increasing nociceptive excitability. Moreover, a shift of Nav involvement toward the terminal occurs in corneal hyperalgesia resulting from acute photokeratitis. This dynamic change in the location of Nav-mediated propagation initiation could underlie pathological pain hypersensitivity.Support is gratefully acknowledged from the Israel Science Foundation under grant agreement 1470/17 (R.H.G., O.B., B. K., S.L., and A.M.B.); the Deutsch-Israelische Projectkooperation program of the Deutsche Forschungsgemeinschaft (DIP) under grant agreement BI 1665/1-1ZI1172/12-1 (R.H.G., O.B., B. K., S.L., and A.M.B.); the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 260914 (R.H.G., O.B., B. K., S.L., and A.M.B.); the Jacob and Lena Joels Chair for Excellence in Life and Medical Sciences (A.M.B.); the Hoffman Leadership Program (R.H.G. and O.B.); and grant SAF2017-83674-C2-2-R from Agencia Estatal de Investigación, Spain, and ERDF, European Union (A.I.-P.).Peer reviewe

    An experimental model of neuro–immune interactions in the eye: Corneal sensory nerves and resident dendritic cells

    No full text
    This article belongs to the Special Issue Immune Pathogenesis and Regulation of Ocular Inflammation.The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.This work was funded by grants SAF2017–83674–C2–1–R (JG) and SAF2017–83674–C2–2–R (MCA) from the Spanish Agencia Estatal de Investigación and European Regional Development Funds “Una manera de hacer Europa”, and grant PID2020–115934RB–I00 (JG/MCA) funded by MICIN/AEI/1013039/5011100011033. Funding by the Excellence Program grant PROMETEO/2018/114 (JG) and predoctoral fellowships ACIF/2017/169 (LF–R) from the Generalitat Valenciana and PRE2018–083980 (AI–P) from MICIN/AEI is also acknowledged.Peer reviewe

    Role of Piezo2 channels in mechanical ocular pain

    No full text
    Resumen del trabajo presentado al International Workshop on Chronic Pain and Itch: Mechanisms and Circuits, celebrado en Alicante (España) del 20 al 22 de octubre de 2021.Ministerio de Ciencia e Innovación, SAF2016-77233-R and PID2019-108194RB-100 co-financed by the European Regional Development Fund (ERDF), and the “Severo Ochoa” Program for Centers of Excellence in R&D SEV-2013-0317 and SEV-2017-0723.Peer reviewe
    corecore