103 research outputs found

    Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots

    Get PDF
    We theoretically investigate the effects of long-range disorder and electron-electron interactions on the optical properties of hexagonal armchair graphene quantum dots consisting of up to 10806 atoms. The numerical calculations are performed using a combination of tight-binding, mean-field Hubbard and configuration interaction methods. Imperfections in the graphene quantum dots are modelled as a long-range random potential landscape, giving rise to electron-hole puddles. We show that, when the electron-hole puddles are present, tight-binding method gives a poor description of the low-energy absorption spectra compared to meanfield and configuration interaction calculation results. As the size of the graphene quantum dot is increased, the universal optical conductivity limit can be observed in the absorption spectrum. When disorder is present, calculated absorption spectrum approaches the experimental results for isolated monolayer of graphene sheet

    Effects of random atomic disorder on the magnetic stability of graphene nanoribbons with zigzag edges

    Get PDF
    We investigate the effects of randomly distributed atomic defects on the magnetic properties of graphene nanoribbons with zigzag edges using an extended mean-field Hubbard model. For a balanced defect distribution among the sublattices of the honeycomb lattice in the bulk region of the ribbon, the ground state antiferromagnetism of the edge states remains unaffected. By analyzing the excitation spectrum, we show that while the antiferromagnetic ground state is susceptible to single spin flip excitations from edge states to magnetic defect states at low defect concentrations, it's overall stability is enhanced with respect to the ferromagnetic phase.Comment: 5 pages, 4 figure

    Planar bilayer metamaterial with left-handed transmission and negative refraction at microwave frequencies

    Get PDF
    A planar composite metamaterial consisting of bilayers of metal cutwire pairs and long wire pairs which are separated by a thin dielectric layer is designed and fabricated for microwave frequencies. The simulated and experimentally measured transmission spectra of the metamaterial and its individual components (cutwire-only and wire-only) indicates that the metamaterial exhibits a transmission band within the common stop bands of its components, and thus acts as a medium with negative index of refraction. The existence of n < 0 is further supported by a refraction experiment. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA

    Multi-elemental speciation analysis of barley genotypes diering in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS

    Get PDF
    Plants respond to Cd exposure by synthesizing heavy-metal-binding oligopeptides, called phytochelatins (PCs). These peptides reduce the activity of Cd2+ ions in the plant tissues by forming Cd chelates. The main objective of the present work was to develop an analytical technique, which allowed identication of the most prominent Cd species in plant tissue by SEC-ICP-MS and ESI-TOF-MS. An integrated part of the method development was to test the hypothesis that dierential Cd tolerance between two barley genotypes was linked to dierences in Cd speciation. Only one fraction of Cd species, ranging from 7001800 Da, was detected in the shoots of both genotypes. In the roots, two additional fractions ranging from 29004600 and 670015 000 Da were found. The Cd-rich SEC fractions were heart-cut, de-salted and demetallized using reversed-phase chromatography (RPC), followed by ESI-MS-TOF to identify the ligands. Three dierent families of PCs, viz. (gGlu-Cys)n-Gly (PCn), (gGlu-Cys)n-Ser (iso-PCn) and Cys-(gGlu-Cys)n-Gly (des-gGlu-PCn), the last lacking the N-terminal amino acid, were identied. The PCs induced by Cd toxicity also bound several essential trace elements in plants, including Zn, Cu, and Ni, whereas no Mn species were detected. Zn, Cu and Ni-species were distributed between the 7001800 Da and 670015 000 Da fractions, whereas only Cd species were found in the 29004600 Da fraction dominated by PC3 ligands. Although the total tissue concentration of Cd was similar for the two species, the tolerant barley genotype synthesized signicantly more CdPC3 species with a high Cd specicity than the intolerant genotype, clearly indicating a correlation between Cd tolerance and the CdPC speciation

    Bismuth(III) bromide-thioamide complexes: synthesis, characterization and cytotoxic properties

    Get PDF
    New bismuth(III) bromine compounds of the heterocyclic thioamides were prepared and structurally characterized. The reaction of heterocyclic thioamides with bismuth(III) bromide resulted in the formation of the {[BiBr2(mu(2)-Br)(MMI)(2)](2)center dot CH3COCH3 center dot H2O} (1), {[BiBr2(MBZIM)(4)]center dot Br center dot 2H(2)O} (2), {[BiBr2(mu(2)-Br)(tHPMT)(2)](2)center dot CH3CN} (3), {[BiBr2(mu(2)-Br)(PYT)(2)](2)center dot CH3CN} (4) and {[BiBr2(mu(2)-Br)(MBZT)(2)](2) 2CH(3)OH} (5) complexes (MMI: 2-mercapto-1-methylimidazole, MBZIM: 2-mercaptobenzimidazole, tHPMT: 2-mercapto-3,4,5,6-tetrahydro-pyrimidine, PYT: 2-mercaptopyridine and MBZT: 2-mercaptobenzothiazole). The complexes 1-5 were characterized by melting point (m.p.), elemental analysis (c.a.), molar conductivity, Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman), nuclear magnetic resonance (H-1 and (CNMR)-C-13) spectroscopy, UV-Vis spectroscopy and thermogravimetric-differential thermal analysis (TG-DTA). The molecular structures of 1-5 were determined by single-crystal X-ray diffraction. Complex 2 is a first ionic monomuclear octahedral bismuth(III) bromide, while the complexes 1,3-5 are the first examples of dinuclear bismuth(III) bromide derivatives. Complexes 1-5 were evaluated in terms of their in vitro cytotoxic activity against human adenocarcinoma breast (MCF-7) and cervix (HeLa) cells. The toxicity on normal human fetal lung fibroblast cells (MRC-5) was also evaluated. Moreover, the complexes 1-5 and free heterocyclic thioamide ligands were studied upon the catalytic peroxidation of the linoleic acid by the enzyme lipoxygenase (LOX).Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [114Z457](a) I.I.O. and M.C. acknowledge the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 114Z457). (b) CNB and SKH would like to thank the Unit of Bioactivity Testing of Xenobiotics of the University of Ioannina for providing access to their facilities. (c) The International Graduate Program in 'Biological Inorganic Chemistry', which operates at the University of Ioannina within the collaboration of the Departments of Chemistry of the Universities of Ioannina, Athens, Thessaloniki, Patras, Crete and the Department of Chemistry of the University of Cyprus (http://bic.chem.uoi.gr/BIC-En/index-en.html), is acknowledged for the stimulating discussion forum

    Effect of molecular and electronic structure on the light harvesting properties of dye sensitizers

    Get PDF
    The systematic trends in structural and electronic properties of perylene diimide (PDI) derived dye molecules have been investigated by DFT calculations based on projector augmented wave (PAW) method including gradient corrected exchange-correlation effects. TDDFT calculations have been performed to study the visible absorbance activity of these complexes. The effect of different ligands and halogen atoms attached to PDI were studied to characterize the light harvesting properties. The atomic size and electronegativity of the halogen were observed to alter the relaxed molecular geometries which in turn influenced the electronic behavior of the dye molecules. Ground state molecular structure of isolated dye molecules studied in this work depends on both the halogen atom and the carboxylic acid groups. DFT calculations revealed that the carboxylic acid ligands did not play an important role in changing the HOMO-LUMO gap of the sensitizer. However, they serve as anchor between the PDI and substrate titania surface of the solar cell or photocatalyst. A commercially available dye-sensitizer, ruthenium bipyridine (RuBpy), was also studied for electronic and structural properties in order to make a comparison with PDI derivatives for light harvesting properties. Results of this work suggest that fluorinated, chlorinated, brominated, and iyodinated PDI compounds can be useful as sensitizers in solar cells and in artificial photosynthesis.Comment: Single pdf file, 14 pages with 7 figures and 4 table

    New physics effects to the lepton polarizations in the B -> K l^+ l^- decay

    Get PDF
    Using the general, model independent form of the effective Hamiltonian, the general expressions of the longitudinal, normal and transversal polarization asymmetries for (l^-) and (l^+) and combinations of them for the exclusive (B -> K l^+ l^-) decay are found. The sensitivity of lepton polarizations and their combinations on new Wilson coefficients are studied. It is found that there exist regions of Wilson coefficients for which the branching ratio coincides with the Standard Model result while the lepton polarizations differ substantially from the standard model prediction. Hence, studying lepton polarization in these regions of new Wilson coefficients can serve as a promising tool for establishing new physics beyond the Standard Model.Comment: 18 pp, 14 figures (postscript formatted), LaTex formatte

    Author Correction: Elucidating causative gene variants in hereditary Parkinson’s disease in the Global Parkinson’s Genetics Program (GP2)

    Get PDF
    Correction to: s41531-023-00526-9 npj Parkinson’s Disease, published online 27 June 2023 In this article the Global Parkinson’s Genetics Program (GP2) members names and affiliations were missing in the main author list of the Original article which are listed in the below

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia
    corecore