14 research outputs found
Quantum Symmetries and Marginal Deformations
We study the symmetries of the N=1 exactly marginal deformations of N=4 Super
Yang-Mills theory. For generic values of the parameters, these deformations are
known to break the SU(3) part of the R-symmetry group down to a discrete
subgroup. However, a closer look from the perspective of quantum groups reveals
that the Lagrangian is in fact invariant under a certain Hopf algebra which is
a non-standard quantum deformation of the algebra of functions on SU(3). Our
discussion is motivated by the desire to better understand why these theories
have significant differences from N=4 SYM regarding the planar integrability
(or rather lack thereof) of the spin chains encoding their spectrum. However,
our construction works at the level of the classical Lagrangian, without
relying on the language of spin chains. Our approach might eventually provide a
better understanding of the finiteness properties of these theories as well as
help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added
an appendix, fixed minor typo
Washing treatment impact on print quality of screen printed knitted fabrics
The surface of textile materials is highly textured, commonly in non-uniform ways. Because of this texture effect, textile surface appears rougher and more porous than other printing substrates, which can cause excessive ink penetration during printing process. Next, washing process is very important factor because it influences ink characteristics on printed samples as well as structural changes of the textile substrate. The aim of this paper is to determine the influences of washing process and different mesh tread count used for printing on print quality. This will be obtained by using spectrophotometric analysis, and GLCM image processing method for print mottle estimation. The results of this research show that increasing number of washing processes leads to higher color differences reproduction color in comparison to printed materials before washing. It also shows that textile surface texture has a great influence on print mottle as well as that number of washing treatment series can generate variations of solid-tone print uniformity. Keywords: cotton, different thread count, GLCM, spectrophotometric analysis, series of washing process
Probing Intrinsic Neural Timescales in EEG with an Information-Theory Inspired Approach: Permutation Entropy Time Delay Estimation (PE-TD)
Time delays are a signature of many physical systems, including the brain, and considerably shape their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-spatial theory of consciousness (TTC). However, they are often not known a priori and need to be estimated from time series. In this study, we propose the use of permutation entropy (PE) to estimate time delays from neural time series as a more robust alternative to the widely used autocorrelation window (ACW). In the first part, we demonstrate the validity of this approach on synthetic neural data, and we show its resistance to regimes of nonstationarity in time series. Mirroring yet another example of comparable behavior between different nonlinear systems, permutation entropy-time delay estimation (PE-TD) is also able to measure intrinsic neural timescales (INTs) (temporal windows of neural activity at rest) from hd-EEG human data; additionally, this replication extends to the abnormal prolongation of INT values in disorders of consciousness (DoCs). Surprisingly, the correlation between ACW-0 and PE-TD decreases in a state-dependent manner when consciousness is lost, hinting at potential different regimes of nonstationarity and nonlinearity in conscious/unconscious states, consistent with many current theoretical frameworks on consciousness. In summary, we demonstrate the validity of PE-TD as a tool to extract relevant time scales from neural data; furthermore, given the divergence between ACW and PE-TD specific to DoC subjects, we hint at its potential use for the characterization of conscious states