3 research outputs found
Geolocalizaci贸n de usuarios en Twitter utilizando redes convolucionales de grafos
En este trabajo utilizamos un conjunto de datos recolectados de la red social Twitter con el objetivo de analizar el desempe帽o de distintos modelos que proponemos para determinar la geolocalizaci贸n聽de los usuarios de la plataforma. Tambi茅n realizamos un an谩lisis sobre聽los perfiles de los usuarios para verificar qu茅 tan fiable puede ser la determinaci贸n de su residencia. En el art铆culo detallamos distintas formas聽de construir las redes que modelan las relaciones entre los usuarios a聽fin de mejorar la estimaci贸n de su ubicaci贸n, con sus respectivas ventajas y desventajas. Por 煤ltimo, explicamos nuestro procedimiento para la聽detecci贸n de t茅rminos locales, y la conformaci贸n de secuencias para los聽m茅todos basados en redes neuronales.Sociedad Argentina de Inform谩tica e Investigaci贸n Operativ
Deciphering the global organization of clustering in real complex networks
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles
Deciphering the global organization of clustering in real complex networks
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles