9 research outputs found

    The paternal genetic legacy of Hungarian-speaking Rétköz (Hungary) and Váh valley (Slovakia) populations

    Get PDF
    One hundred and six Rétköz and 48 Váh valley samples were collected from the contact zones of Hungarian-Slovakian territories and were genotyped for Y-chromosomal haplotypes and haplogroups. The results were compared with contemporary and archaic data from published sources. The genetic composition of the Rétköz population from Hungary and the Váh valley population from Slovakia indicates different histories. In the Rétköz population, the paternal lineages that were also found in the Hungarian Conquerors, such as R1a-Z93, N-M46, Q-M242, and R1b-L23, were better preserved. These haplogroups occurred in 10% of the population. The population of the Váh valley, however, is characterized by the complete absence of these haplogroups. Our study did not detect a genetic link between the Váh valley population and the Hungarian Conquerors; the genetic composition of the Váh valley population is similar to that of the surrounding Indo-European populations. The Hungarian Rétköz males shared common haplotypes with ancient Xiongnu, ancient Avar, Caucasian Avar, Abkhazian, Balkarian, and Circassian males within haplogroups R1a-Z93, N1c-M46, and R1b-L23, indicating a common genetic footprint. Another difference between the two studied Hungarian populations can be concluded from the Fst-based MDS plot. The Váh valley, in the western part of the Hungarian-Slovakian contact zone, is genetically closer to the Western Europeans. In contrast, Rétköz is in the eastern part of that zone and therefore closer to the Eastern Europeans

    Peripheral gene interactions define interpretable clusters of core ASD genes in a network-based investigation of the omnigenic theory

    Get PDF
    According to the recently proposed omnigenic theory, all expressed genes in a relevant tissue are contributing directly or indirectly to the manifestation of complex disorders such as autism. Thus, holistic approaches can be complementary in studying genetics of these complex disorders to focusing on a limited number of candidate genes. Gene interaction networks can be used for holistic studies of the omnigenic nature of autism. We used Louvain clustering on tissue-specific gene interaction networks and their subgraphs exclusively containing autism-related genes to study the effects of peripheral gene interactions. We observed that the autism gene clusters are significantly weaker connected to each other and the peripheral genes in non-neuronal tissues than in brain-related tissues. The biological functions of the brain clusters correlated well with previous findings on autism, such as synaptic signaling, regulation of DNA methylation, or regulation of lymphocyte activation, however, on the other tissues they did not enrich as significantly. Furthermore, ASD subjects with disruptive mutations in specific gene clusters show phenotypical differences compared to other disruptive variants carrying ASD individuals. Our results strengthen the omnigenic theory and can advance our understanding of the genetic background of autism

    Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia

    Get PDF
    IntroductionPreeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR.MethodsWe isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis.ResultsOverall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR.DiscussionOur rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype

    Posttranscriptional Regulation of the Human ABCG2 Multidrug Transporter Protein by Artificial Mirtrons

    No full text
    ABCG2 is a membrane transporter protein that has been associated with multidrug resistance phenotype and tumor development. Additionally, it is expressed in various stem cells, providing cellular protection against endobiotics and xenobiotics. In this study, we designed artificial mirtrons to regulate ABCG2 expression posttranscriptionally. Applying EGFP as a host gene, we could achieve efficient silencing not only in luciferase reporter systems but also at the ABCG2 protein level. Moreover, we observed important new sequential-functional features of the designed mirtrons. Mismatch at the first position of the mirtron-derived small RNA resulted in better silencing than full complementarity, while the investigated middle and 3′ mismatches did not enhance silencing. These latter small RNAs operated most probably via non-seed specific translational inhibition in luciferase assays. Additionally, we found that a mismatch in the first position has not, but a second mismatch in the third position has abolished target mRNA decay. Besides, one nucleotide mismatch in the seed region did not impair efficient silencing at the protein level, providing the possibility to silence targets carrying single nucleotide polymorphisms or mutations. Taken together, we believe that apart from establishing an efficient ABCG2 silencing system, our designing pipeline and results on sequential-functional features are beneficial for developing artificial mirtrons for other targets

    Partial Disturbance of Microprocessor Function in Human Stem Cells Carrying a Heterozygous Mutation in the DGCR8 Gene

    No full text
    Maturation of microRNAs (miRNAs) begins by the “Microprocessor” complex, containing the Drosha endonuclease and its partner protein, "DiGeorge Syndrome Critical Region 8" (DGCR8). Although the main function of the two proteins is to coordinate the first step of precursor miRNAs formation, several studies revealed their miRNA-independent functions in other RNA-related pathways (e.g., in snoRNA decay) or, for the DGCR8, the role in tissue development. To investigate the specific roles of DGCR8 in various cellular pathways, we previously established a human embryonic stem-cell (hESC) line carrying a monoallelic DGCR8 mutation by using the CRISPR-Cas9 system. In this study, we genetically characterized single-cell originated progenies of the cell line and showed that DGCR8 heterozygous mutation results in only a modest effect on the mRNA level but a significant decrease at the protein level. Self-renewal and trilineage differentiation capacity of these hESCs were not affected by the mutation. However, partial disturbance of the Microprocessor function could be revealed in pri-miRNA processing along the human chromosome 19 miRNA cluster in several clones. With all these studies, we can demonstrate that the mutant hESC line is a good model to study not only miRNA-related but also other “noncanonical” functions of the DGCR8 protein

    Circulating exosomal and Argonaute-bound microRNAs in preeclampsia

    No full text
    Introduction: microRNAs (miRNAs) play important role in the regulation of placental development, and abnormal miRNA expression is associated with preeclampsia (PE). miRNAs are released from trophoblast cells to maternal blood flow, where they are highly stable, being encapsulated inside extracellular vesicles, like exosomes or bound to Argonaute proteins. In PE, placental dysfunction leads to aberrant extracellular miRNA secretion. hsamiR- 210 is a hypoxia-sensitive miRNA found to be upregulated in PE, however, it is unknown whether it is the cause or the consequence of the disease. Objective: Our aim was to analyze the expression of several miRNAs, including hsa-miR- 210 in placenta, exosome and Ago-bound fractions comparing normal (N) and PE pregnancies. We performed in vitro analyses of extracellular hsa-miR-210 secretion of trophoblast cell cultures (of villous and extravillous origin) under hypoxic condition. Methods: PE and N placenta samples were collected from C-sections, and blood samples were drawn from each pregnant woman in the third trimester. Htr-8 and Jar cell lines were cultured in exosome-free media and treated with hypoxia-mimetic agents. Exosome and Agobound fractions were isolated by membrane affinity spin column method from plasma and cell media. Short RNAs were extracted from exosomes and vesicle-free fractions, and total-RNA was isolated from the placenta samples. The RNA purity and concentration were measured by spectrophotometry. Expression analysis was carried out by qPCR with specific primers to target and reference miRNAs. Results: The level of hsa-miR-210 was significantly higher in PE placentas, which could cause a minor increase of exosomal and a high elevation of Ago-bound miR-210 in circulation. Hypoxia leads to intracellular hsa-miR-210 upregulation in trophoblast cell lines. In extravillous cell (HTR8) media, only the level of exosomal hsa-miR-210 was increased but no change in Ago-bound hsa-miR-210 level was observed. In contrast, in villous cell (JAR) media, the level of exosomal hsa-miR-210 was increased and enhanced release of Ago-bound hsa-miR-210 was also observed. Conclusion: Based on our data, we postulate that in PE, exosomal hsa-miR-210 are secreted actively from the trophoblast, and by intercellular communication, it may have a role in disease etiology. In addition, there is a passive release of Ago-bound hsa-miR-210 into the circulation, which may represent by-products of cell-death and is thereby a possible consequence of the disease
    corecore