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Exosomal small RNA profiling
in first-trimester maternal
blood explores early
molecular pathways of
preterm preeclampsia
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Introduction: Preeclampsia (PE) is a severe obstetrical syndrome characterized

by new-onset hypertension and proteinuria and it is often associated with fetal

intrauterine growth restriction (IUGR). PE leads to long-term health

complications, so early diagnosis would be crucial for timely prevention. There

are multiple etiologies and subtypes of PE, and this heterogeneity has hindered

accurate identification in the presymptomatic phase. Recent investigations have

pointed to the potential role of small regulatory RNAs in PE, and these species,

which travel in extracellular vesicles (EVs) in the circulation, have raised the

possibility of non-invasive diagnostics. The aim of this study was to investigate

the behavior of exosomal regulatory small RNAs in themost severe subtype of PE

with IUGR.

Methods:We isolated exosomal EVs from first-trimester peripheral blood plasma

samples of women who later developed preterm PE with IUGR (n=6) and

gestational age-matched healthy controls (n=14). The small RNA content of

EVs and their differential expression were determined by next-generation

sequencing and further validated by quantitative real-time PCR. We also

applied the rigorous exceRpt bioinformatics pipeline for small RNA

identification, followed by target verification and Gene Ontology analysis.

Results:Overall, >2700 small RNAs were identified in all samples and, of interest,

the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi

species, 16 differentially expressed microRNAs were up-regulated in PE, whereas

up-regulated and down-regulated members were equally found among the six

identified Piwi-associated RNAs. Gene ontology analysis of the predicted small

RNA targets showed enrichment of genes in pathways related to immune

processes involved in decidualization, placentation and embryonic

development, indicating that dysregulation of the induced small RNAs is
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connected to the impairment of immune pathways in preeclampsia

development. Finally, the subsequent validation experiments revealed that the

hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE

associated with IUGR.

Discussion: Our rigorously designed study in a homogeneous group of patients

unraveled small RNAs in circulating maternal exosomes that act on physiological

pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits

are not only suitable biomarker candidates, but the revealed biological pathways

may further inform us about the complex pathology of this severe PE subtype.
KEYWORDS

biomarker, piRNA, miRNA, exosome, pregnancy, decidualization, early diagnosis,
liquid biopsy
1 Introduction

Preeclampsia (PE) is a severe obstetrical syndrome

characterized by new-onset hypertension and proteinuria after the

20th week of pregnancy. It results in severe maternal complications,

such as end-organ dysfunction, and is frequently associated with

fetal intrauterine growth restriction (IUGR) (1–5). Moreover,

beyond the pregnancy, it can pose a life-threatening risk of

cardiometabolic disease and long-term health issues for both the

mother and her offspring (6, 7), and it also increases the risk of

recurrence of preeclampsia in subsequent pregnancies, especially in

women who have underlying immunological disorders (e.g.

autoimmune diseases) (8). During pregnancy, placental

development requires dynamic tissue rearrangement and

remodeling of the uterine spiral arteries within the decidua and

the inner third of the myometrium by a well-controlled extravillous

trophoblast invasion process (9). The etiology of PE remains

incompletely elucidated, but the generally accepted view is that

these tightly-regulated placental developmental processes, which

include trophoblast invasion, are disrupted, leading to a

malfunctioning placenta, the consequent placental release of anti-

angiogenic and pro-inflammatory substances, downstream

maternal systemic immune cell activation, platelet activation, and

disturbed fetal circulation and growth (4, 5, 10–20). PE occurring

before the 34th week of pregnancy (early-onset PE, EOPE) is

characterized by the insufficient development and subsequent

dysfunction of the placenta, leading to strong systemic

inflammation in the maternal vasculature, endothelial

dysfunction, end-organ disease, and often fetal growth

retardation. In contrast, the late-onset PE (LOPE) subtype, which

manifests after 34 weeks of gestation, is less affected by placental

disease and is strongly correlated with maternal chronic health

conditions, such as pre-existing cardiovascular disease, obesity, or

type 2 diabetes. It is often considered a metabolic imbalance when

the placental capacity is inadequate to meet the demands of the

growing fetus (2, 14, 21–28).
02
PE affects 2-8% of all pregnancies worldwide (7, 29), leading to

the deaths of more than 75,000 women and 500,000 fetuses annually

(4), but as the symptoms can usually be detected only in the second

half of gestation, early detection of the disease using appropriate

biomarkers remains a challenge. Recently, several studies have

proposed the role of non-coding RNAs (ncRNAs) in the etiology of

PE (30–33), and an emerging view is that these molecules could be

transported in the circulation in membrane-encapsulated

extracellular vesicles (EVs) and thus have diagnostic significance

(34–40). Among the ncRNA groups, small RNAs of the RNA

interference (RNAi) pathways are attractive targets for investigation

because their functional roles have been more extensively elucidated

as opposed to other classes, such as long ncRNAs or Y RNAs (31, 41).

The most prominent representatives of the RNAi-related species are

microRNAs (miRNAs) and Piwi-associated small RNAs (piRNAs).

Both classes represent short single-stranded RNAs that are

incorporated into Argonaute (AGO) family protein-containing

RNA-induced silencing complexes (RISCs), which find their target

RNA molecules through sequence complementarity (42, 43).

miRNAs are shorter, typically between 20-24 nucleotides in length;

they associate with the AGO-clade proteins (AGO1-4 in humans),

and their effector complexes mostly target mRNAs, initiating their

decay and/or inhibiting their translation (44, 45). Since a single

miRNA molecule can regulate multiple target mRNAs, and vice

versa, one mRNA can be regulated by several miRNA species, the

functional role of miRNA-containing RISCs can be considered as a

complex, post-transcriptional fine-tuning of gene expression (46, 47).

In contrast, piRNAs are longer, with an average length of 27-35

nucleotides, are 2’-OH methylated at their 3’ end, and associate with

the PIWI clade of AGO proteins (PIWIL1-4 in humans) (48). They

were originally considered to be the “guardians” of germline cells

mainly by targeting transposable elements (49–51), but recent studies

have also uncovered several functions of piRNAs in somatic cells

(48, 52).

Recently, numerous investigations have been published

describing the putative roles of various small RNAs in PE, but the
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overlap among these predicted targets is typically small (33, 53–59).

Apart from technical differences, a major concern with these

investigations is that the included patient groups in these studies

were not generally uniform due to the inherent heterogeneity of the

disease. As described earlier, PE can be divided into at least two major

subtypes based on the clinical onset of the symptoms (EOPE versus

LOPE), but various further subclasses can be defined based on the

patients’ molecular profiles (2, 22, 24, 60–62). Therefore, to find

reliable etiological factors and potential biomarkers, this disease

heterogeneity must be considered in the study design. Here, we

aimed to investigate the early molecular background of PE at the

small RNA level in a well-defined, clinically homogeneous population

of patients with the most severe phenotype, which develops before 37

weeks of gestation and strongly affects fetal growth.
2 Materials and methods

2.1 Study population, clinical definition

Patient recruitment and sample collection were carried out

during the second phase of the Hungarian Perinatal Study (HUN-

PER) at the Department of Obstetrics and Gynecology of the Petz

Aladár County Teaching Hospital in Győr, and at the Department

of Obstetrics and Gynecology of the University of Debrecen

in Debrecen.

First-trimester plasma samples from six Caucasian women who

later developed PE associated with IUGR and 14 healthy controls

matched for gestational age (GA) within one week of sample

collection were selected for inclusion. GA was determined based

on fetal crown-rump length (CRL) measured by ultrasound scan

between the 10th and 13th weeks of pregnancy. PE was defined as

new-onset hypertension developing after 20 weeks of gestation

(systolic and/or diastolic blood pressure of >140mmHg and/or

>90mmHg, respectively, measured on at least 2 occasions, 4

hours to 1 week apart) coupled with proteinuria (>300mg in a

24-hour urine collection or 2 random urine specimens with ≥1+

protein by dipstick collected 4 hours to 1 week apart or one random

urine specimen with ≥2+ protein by dipstick) (63). Early-onset PE

was defined as PE that developed at <34 weeks of gestation (64).

IUGR was defined as fetal weight either below the 3rd percentile or

below the 10th percentile combined with Doppler anomalies (65).

Women in the control group had an uncomplicated pregnancy

which resulted in the delivery of an appropriate-for-gestational-age

neonate at term (>37 weeks of gestation).
2.2 Sample collection and handling

Venous blood samples were collected between the 10th and 13th

weeks of pregnancy in 4 mL EDTA tubes and kept at 4°C for a

maximum of 3 hours prior to processing. Plasma was separated by

centrifuging blood (2,000×g, 10min, 4°C followed by 10,000×g, 10min,

4°C), and then stored in 300ml aliquots at −80°C. The samples and the

associated clinical and demographic information, including the

delivery and medication records, were stored anonymously at the
Frontiers in Immunology 03
Perinatal Biobank of the Research Centre for Natural Sciences in

Budapest, Hungary (https://www.perinatalbiobank.com/).
2.3 Exosome and RNA extraction

For the procedure, we followed the previously published

protocol (66). Briefly, 300ml aliquots of stored plasma samples

were centrifuged at 3000×g for 5 minutes, then pre-filtered

through a 0.22 mm syringe filter to remove cell debris and larger-

sized EVs. Exosomes were isolated from ~200 ml of pre-filtered
plasma samples and subsequently, total RNA was extracted from

the exosomes using the exoRNeasy Midi Kit (QIAGEN) following

the manufacturer’s instructions.
2.4 Small RNA sequencing

Small RNA sequencing was performed by Lexogen GmbH

without bioinformatics or subsequent analysis. RNA integrity was

assessed on a Fragment Analyzer System using the DNF-471 RNA

Kit (Agilent). Multiplexed sequencing-ready indexed small RNA

libraries were prepared using the Small RNA-Seq Library Prep Kit

for Illumina (052UG128V0110) following the procedure as

described in the User’s Guide. For library preparation, an average

of 1 ng of the total RNA sample was used as an input without small

RNA enrichment. The quality control of the library preparation was

checked by HS DNA assay for the Fragment Analyzer system

(Agilent). The concentration of the resulting libraries was

quantified using a Qubit dsDNA HS assay (Thermo Fisher).

Next-Generation Sequencing (NGS) was performed on the

Illumina NextSeq 2000 platform.

Bioinformatics analysis was performed using the exceRpt

pipeline (version 4.3.2) (67). Read Per Million (RPM) normalized

readcounts were used for the analysis of differential expression in

exosomal small RNA, employing the glmQL method within the

edgeR package (version 3.38.4) (68). The raw and processed

sequencing data are available in the GSE241815 dataset at Gene

Expression Omnibus (GEO).
2.5 Target prediction and gene ontology

The target mRNAs of the miRNAs were predicted by the

miRabel web tool with a miRabel score of less than 0.05. The

target genes of piRNAs were identified by miRanda 3.3a against the

human transcriptome (hg38) with a maximum free energy of -20

kcal/mol and a miRanda score threshold of 160. Only protein-

coding targets were subjected to subsequent analyses. Gene

Ontology (GO) analysis was performed using the web tool

ShinyGo 0.77. When the target mRNAs of miRNAs and piRNAs

were handled separately, the target mRNAs of a minimum of 4

miRNAs and a minimum of 2 piRNAs were selected for GO. When

the target mRNAs of up- and down-regulated small RNAs were

examined, the genes targeted by a minimum of 5 up-regulated or 1

down-regulated small RNA were selected for GO.
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2.6 Reverse-transcription and quantitative
real-time PCR

cDNA synthesis was performed using the miRCURY LNA RT

Kit (QIAgen), with 0.56 ml of RNA templates added to each reaction

according to the equation “Template RNA [µl] = Elution volume [µl]/

Original sample volume [µl] * 8 [µl]” (https://www.qiagen.com/us/

resources/resourcedetai l? id=34039664-5bf4-42b1-9858-

f4c28dace788&lang=en). qPCR was carried out using the miRCURY

Probe PCR Kit, run on a StepOnePlus™ platform (Thermo Fisher

Scientific) according to the manufacturer’s instructions. miRCURY

LNA miRNA Probe Assays were applied in the case of hsa-miR-122-

5p, while custom-made miRCURY LNA miRNA Custom Probe

Assays were used in the case of hsa_piR_016658 (Table 1). During

qPCR measurements, we applied the DDCt method. We used hsa-

miR-21-5p as an endogenous control and we normalized the small

RNA expression levels to the mean expression levels of the control

samples instead of using a dedicated reference sample.
2.7 Statistical analyses

We used R 4.2.2 for statistical analysis. The Shapiro-Wilk testwas

carried out to determine the normality of the continuous variables in

the patient descriptive table. For normally distributed continuous

variables, we assessed the homogeneity of variance using the F-test,

and subsequently, we used the two sample t-test to examine statistical

significance. For non-normally distributed continuous variables, we

used the non-parametric Wilcoxon Rank-Sum test for comparison.

For categorical variables, Fisher’s exact test was used for comparison

between groups. In the sequencing data analysis, the differential

exosomal small RNA expression was identified by the quasi-

likelihood F-test, where the GA at sampling (in weeks) calculated

by CRL was added as an additional experimental factor in the design

matrix. -DDCt values of the small RNAs were represented on box

plots as medians with interquartile ranges. p-valueswere calculated by

the logistic regression model, in which we adjusted for GA at

sampling (in weeks). Results were considered statistically significant

at a p-value of <0.05.
3 Results

3.1 Characteristics of the study population

To investigate the changes in exosomal small RNA content

associated with PE in early pregnancy, we selected first-trimester
Frontiers in Immunology 04
maternal plasma samples from 14 control individuals and 6 patients

with PE associated with IUGR from our biobank. The demographic

and clinical characteristics of the study groups are shown in Table 2.

Due to the strict gestational age matching, GA values at sampling

were not different between the groups. However, several parameters

showed significant differences, including blood pressure,

proteinuria, GA at delivery, birth weight, and birth weight

percentile. Interestingly, we could also find prior allergies in two-

thirds of the PE patients, which is in accord with a previous

epidemiological study that revealed maternal allergy as an isolated

risk factor for early-onset preeclampsia (69), suggesting an

immunological origin of this severe subtype of PE.
3.2 Changes in exosomal small RNA
profiles of PE patients in the
discovery samples

For small RNA analysis, exosomes were isolated from blood

plasma samples of 5 randomly selected control and 5 PE patients,

representing “discovery samples”. Following total RNA isolation

from the exosomes, the samples were sequenced for small RNAs

and the results were analyzed using the bioinformatics pipeline

described in the Materials and Methods section. Although limited

by the small amounts of starting material, and thereby, the total

number of reads, similar proportions of the reads could be mapped to

the human genome in all samples (Figure 1A). Since the majority of

small RNAs in all samples belong to miRNAs (Figure 1B), we decided

to focus on the RNA interference pathways in further analyses, and

therefore, also included the detected piRNAs in our study.

GA is associated with changes in the expression levels of

different kinds of molecules in the maternal circulation, such as

miRNAs and proteins (70, 71). Therefore, GA at the time of

sampling was included as an additional variable (covariant) in

our analyses to calculate the differential gene expression levels.

The adjusted expression values were then used to determine the

differential miRNA and piRNA expression profiles as shown in

Figure 2. We found a total of 22 small RNA species that showed

significant differential expression in samples from PE pregnancies

as compared to the control group (Table 3). The majority of these

small RNAs were up-regulated in PE-derived exosomes, including

16 miRNAs and 3 piRNAs (Table 3), whereas only 3 piRNAs were

found to be down-regulated (with negative log2FC values in

Table 3). Two of these down-regulated piRNAs (hsa_piR_001331

and hsa_piR_000577) had exactly the same gene expression values

which raises the possibility that they may belong to the same

piRNA cluster.
3.3 Target analyses of differentially
expressed exosome-derived small RNAs

The function of both miRNAs and piRNAs is to regulate mRNA

targets mostly at the post-transcriptional level, therefore, we carried

out a bioinformatics analysis to search for potential mRNAs targeted

by the differentially expressed small RNAs. To apply stringent
TABLE 1 Sequences of mature small RNAs investigated by qPCR.

small RNA name small RNA sequence

hsa-miR-21-5p 5’-UAGCUUAUCAGACUGAUGUUGA-3’

hsa-miR-122-5p 5’-UGGAGUGUGACAAUGGUGUUUG-3’

hsa_piR_016658 5’-CCCCCCACUGCUAAAUUUGACUGGCUA-3’
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prediction criteria for miRNA targets, we considered those transcripts

of protein-coding genes that contain a minimum of four miRNA

binding sites (of the same or differentmiRNA species). By performing
Frontiers in Immunology 05
Gene Ontology (GO) analysis, we found that among the 219

predicted targets (the complete list of identified target mRNAs is in

Supplementary Table 1), the genes with the highest enrichment are,

for example, those involved in ‘decidualization’ (Figure 3A), an

important biological process that ensures the adequate

implantation of the embryo and maternal-fetal immune

interactions during pregnancy (72, 73). Indeed, ‘embryo

implantation’ and ‘placental development’ were also among the

impacted biological processes similar to the ‘regulation of blood

vessel endothelial cell migration’, all of which are disrupted in

preterm severe PE as discussed above. In addition, the majority of

the other enrichment categories represent various developmental

pathways (such as nervous system development) that are required

for normal embryogenesis. These results thus strongly indicate that

the identified exosomal miRNAs are crucial for the regulation of

normal pregnancy, implantation, and embryonic development, and

are likely to be targeted to both maternal and fetal tissues, with their

dysregulation closely linked to maternal and fetal pathogenesis in

preterm severe PE.

For piRNAs, target prediction is still precarious, as the details of

the effector function of piRNA-loaded RISCs in higher organisms,

especially in human tissues, are currently under investigation (51,

74). Based on several models (75, 76), we decided to use the

miRanda platform to identify mRNA targets with at least two

potential piRNA binding sites. Subsequent GO analysis of the

identified 118 target mRNAs showed enrichments in nitrogen

stress response, estradiol-regulated pathways, and certain

neuronal functions, all of which are related to perinatal

developmental processes (Figure 3B), further supporting the

relevance of the identified piRNAs in the regulation of critical

developmental processes in pregnancy.

Having focused on whether any changes in small RNA

expression profiles are connected to PE, in a subsequent

investigation we asked whether the directionality of the

expression changes is important. We considered all miRNAs

and piRNAs together that were either up-regulated or down-

regulated and analyzed the GO categories predicted for their

target mRNAs (the complete list is in Supplementary Table 2).

The protein-coding transcripts targeted by the up-regulated small

RNAs were especially enriched in the osmotic stress response

pathway, but the subsequent categories were also strongly related

to pregnancy or placental disorders (decidualization or placental

development, blood vessel endothelial remodeling), as well as to

calcineurin-NFAT signaling, inositol-phosphate-mediated

signaling, embryo implantation and developmental processes

(Figure 4A). When analyzing the GO classes of the mRNAs

targeted by the down-regulated small RNA species (in this case,

piRNAs only), significant enrichments were identified in protein

polyubiquitination and various cellular morphogenesis pathways,

especially those related to neurodevelopmental processes

(Figure 4B). Taken together, all analyses indicated that the

identified small RNA species play important roles in normal

placental formation and embryonic development, and their

dysregulation is strongly connected to disease progression in

severe preterm PE associated with IUGR.
TABLE 2 Clinical and demographic characteristics of the study groups.

Parameters
Control
(n = 141)

PE + IUGR
(n = 61)

p-value2

Systolic BP (mmHg) ¤ 112 ± 10 152 ± 14 <0.001

Diastolic BP (mmHg) ¤ 71 ± 5 90 ± 4 <0.001

Proteinuria # 0/14 (0%) 5/6 (83.3%) <0.001

GA at delivery (week) * 39.4 ± 0.8 32.7 ± 4.1 <0.001

Mode of conception

Spontaneous 14/14 (100.0%) 6/6 (100.0%)

Type of delivery # 0.050

C-section 4/14 (28.6%) 5/6 (83.3%)

Spontaneous 10/14 (71.4%) 1/6 (16.7%)

CRL (mm) * 37 ± 13 37 ± 15 0.8

GA at time of sampling
(week) *

10.14 ± 1.03 10.00 ± 1.26 0.7

Newborn weight (g) ¤ 3474 ± 444 1433 ± 626 <0.001

EFW percentile * 51 ± 28 1 ± 0 <0.001

Newborn sex # 0.6

Boy 7/14 (50.0%) 2/6 (33.3%)

Girl 7/14 (50.0%) 4/6 (66.7%)

Ethnicity

Caucasian 14/14 (100.0%) 6/6 (100.0%)

Maternal age (years) ¤ 31 ± 4 35 ± 5 0.055

BMI (kg/m²) ¤ 23.2 ± 3.2 25.4 ± 5.0 0.3

Gravidity * 2.43 ± 1.22 1.83 ± 1.60 0.2

Parity * 1.29 ± 1.07 0.67 ± 0.82 0.2

Nulliparity # 3/14 (21.4%) 3/6 (50.0%) 0.3

Maternal history of PE # 0/14 (0%) 2/6 (33.3%) 0.079

Family history of PE # 0/14 (0%) 1/6 (16.7%) 0.3

Allergy # 2/14 (14.3%) 4/6 (66.7%) 0.037

Gestational diabetes # 0/14 (0%) 1/6 (16.7%) 0.3

Medication at the time
of sampling #

0/14 (0%) 1/6 (16.7%) 0.3

Smoking status # 0/14 (0%) 1/6 (16.7%) 0.3
1Mean ± SD; n/N (%).
2Two sample t-test (¤); Wilcoxon rank sum test (*); Fisher’s exact test (#).
BMI – body mass index, BP – blood pressure, CRL – crown-rump length, EWF – estimated
fetal weight, GA – gestational age, IUGR – intrauterine growth restriction, PE – preeclampsia.
Demographic and clinical parameters of the study groups were presented as either mean and
standard deviation (SD) or frequencies. Neither chronic diseases (such as chronic diabetes or
chronic hypertension) nor autoimmune disorders (including Systemic Lupus Erythematosus
or Antiphospholipid Syndrome) were diagnosed, therefore they are not included in the table.
Appropriate statistical analyses were performed according to the distribution types of the data.
Statistically significant differences between the control and the PE+IUGR groups were
accepted at the level of p<0.05.
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3.4 Validation of the identified small RNA
expression profiles in an expanded
sample set

To validate the small RNA sequencing results, we selected small

RNAs with FDR<0.05 values (Table 3) and measured their

expression levels by qPCR methodology. The limited number of

clinical samples restricted our measurements to a study population

of six PE and 14 control samples which also included the discovery

samples. The correlation between the GA at the time of sampling

and the small RNA exosomal expression levels examined by qPCR

was also remarkable (Supplementary Figure 1), so we included the

gestational weeks at the time of sampling as an independent variable

in our model. As shown in Figure 5, the expression level of the
Frontiers in Immunology 06
hsa_piR_016658 showed a significant difference between PE

patients and controls. In contrast, the expression of the selected

hsa-miR-122-5p miRNA did not show a significant difference

between the two groups.
4 Discussion

4.1 Principal findings of the study

1) In total, more than 2700 small RNAs were identified in all

samples, and of interest, the majority belong to the RNAi pathways. 2)

Among the RNAi species, 16 differentially expressed microRNAs were

up-regulated in PE, whereas up-regulated and down-regulated
B

A

FIGURE 1

Analysis of first-trimester maternal plasma-derived exosomal small RNA sequencing data from the discovery samples in the PE (n=5) and control
(n=5) groups. (A) Percentage of mappable and unmappable reads, and those that could not be used for multimap-adjusted alignment.
(B) Percentage of small RNA biotypes in maternal plasma-derived exosomal samples.
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members were equally found among the six identified Piwi-associated

RNAs. 3) Gene ontology analysis of the predicted small RNA targets

showed enrichment of genes in pathways related to immune processes

involved in decidualization, placentation, and embryonic

development, indicating that the dysregulation of the elicited small

RNAs is connected to the impairment of immune pathways in the

development of preeclampsia. 4) The subsequent validation

experiments revealed that the hsa_piR_016658 piRNA is a

promising candidate biomarker for preterm PE associated with IUGR.
4.2 A homogeneous group of preterm PE
patients with IUGR and severe immune
disease is our focus

Previous investigations frequently neglected the inherent

variability among PE subtypes (77) and the molecular markers

elicited in several studies often showed little overlap. Therefore, here

we aimed to examine a clearly defined preterm severe subtype of PE

that is also associated with fetal growth restriction. This

homogenous group of women had pro-inflammatory conditions

before pregnancy, including prior maternal allergies (in two-thirds

of PE patients), which is in agreement with a previous

epidemiological study identifying this risk factor for early-onset

PE (75), and underlying a potential immunological background of

this severe PE subtype. Although the rigorous selection criteria

clearly limited the number of includable samples, this clinically

homogeneous group held promise for the identification of

pathophysiologically relevant differences. At this early stage of

pregnancy, the placenta is not fully developed, and our results

may represent the early steps of PE pathogenesis and indicate very

early diagnostic markers. In addition to the strict gestational age

matching between disease and control samples, we also applied the
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completed gestational weeks at the time of sampling as a covariant

in our bioinformatic models to minimize the bias potentially

introduced by gestational age-related changes in exosomal and

small RNA quantities in maternal blood.
4.3 Preterm PE-related circulating
exosomal small RNAs are associated with
placental disease pathways

We focused strictly on the small RNA content of circulating

exosomes, aiming to discover novel types of potential biomarkers for

this life-threatening PE subtype. It was intriguing to see that the

majority of small RNA reads were mapped to miRNAs, and the most

abundant species showing no significant expression difference

between the groups was hsa-miR-486-5p, which has been widely

shown to be present in exosomes (78–80). The miRNAs showing

significantly different expression in exosomes were all up-regulated

(Table 3) and the majority of them have already been described in
FIGURE 2

Volcano plot of the differentially expressed exosomal miRNAs and
piRNAs in PE associated with IUGR. Differentially expressed small
RNAs were counted using the edgeR quasi-likelihood F-test with
gestational week at the time of sampling as an independent variable.
The x-axis represents the log2 transformed ratio of expression
between the PE and control groups and the y-axis shows the -log10
of the p-values. Small RNAs validated by qPCR are depicted
by arrows.
TABLE 3 Differentially expressed exosomal small RNAs in preterm PE
with IUGR.

small RNA ID log2FC p-value FDR

hsa_piR_016658 -1.01 0.00001 0.01118

hsa-miR-122-5p 1.01 0.00002 0.01118

hsa-miR-4535-3p 5.69 0.00156 0.66835

hsa_piR_021675 0.99 0.00232 0.74667

hsa_piR_001331 -5.11 0.00402 0.81659

hsa_piR_000577 -5.11 0.00402 0.81659

hsa-miR-20a-5p 1.76 0.00467 0.81659

hsa-miR-302a-5p 1.33 0.00508 0.81659

hsa-miR-144-3p 0.77 0.00608 0.85661

hsa-miR-143-3p 0.70 0.00837 0.85661

hsa-miR-183-5p 0.69 0.00885 0.85661

hsa-miR-185-5p 0.63 0.01088 0.85661

hsa-miR-186-5p 0.63 0.01101 0.85661

hsa-miR-1-3p 0.72 0.01223 0.85661

hsa-miR-501-3p 0.71 0.01613 0.85661

hsa-miR-30a-5p 0.53 0.01959 0.85661

hsa-miR-125b-2-3p 4.27 0.02695 0.85661

hsa-miR-96-5p 0.60 0.03008 0.85661

hsa-miR-144-5p 1.23 0.04182 0.85661

hsa_piR_018007 3.93 0.04360 0.85661

hsa_piR_020249 2.36 0.04582 0.85661

hsa-miR-26b-5p 0.92 0.04911 0.85661
front
List of the differentially expressed exosomal miRNAs and piRNAs in PE associated with IUGR
by ascending p-values, also showing the log2-transformed fold change (FC) and false
discovery rate (FDR) values. All 16 miRNAs and 3 piRNAs were up-regulated, while 3
piRNAs were down-regulated.
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connection with various pregnancy-related disorders. These included

hsa-miR-1-3p (81), hsa-miR-183-5p (82, 83), hsa-miR-185-5p (84),

hsa-miR-186-5p (85), and hsa-miR-20a-5p (81), and the latter three

are also normally expressed at higher levels in the first trimester of

healthy pregnancies (86), although in certain studies where exosomes

were not separated they are referred to as plasma-specific miRNAs

(87). Interestingly, hsa-miR-26b-5p showed a tendency for

upregulation in PE, but was not found to be differentially expressed

in another study (88), which may be due to the heterogeneous patient

population included in that study. The hsa-miR-30a-5p was also

found to be up-regulated in PE (89) but it was also described as the

most abundant cell-free miRNA in the urine (90), raising the

possibility of using this biofluid for PE investigations in the future.

In contrast to our findings, there were some miRNA species that

exhibited reduced expression profiles in placental disorders, such as

hsa-miR-143-3p (81) and hsa-miR-96-5p (91). On the other hand,

hsa-miR-122-5p showed a remarkable variation: it was found up-

regulated in one study (88) but down-regulated in a later one (92), and

this variability currently remains unexplained. Of interest, the status of

hsa-miR-125b-2-3p is difficult to assess in recent publications because

it cannot be determined with certainty which arms or isomiRs were

measured in the studies (81, 93, 94). A similar question on miRNA
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arm usage also applies to the hsa-miR-302a or the hsa-miR-144 loci: in

both cases, the downregulation of the 3p arm was detected in PE

samples (88, 95), as compared to our data on the upregulation of the

5p arm (Table 3). Although tissue-specific miRNA arm selection

cannot be ruled out (47), it is intriguing that for both loci, the miRNA

database lists the 5p arms as the dominant ones (https://mirbase.org/).

However, the differences compared to our study may arise from the

comparison of placental tissue results with exosomal results, as well as

from the clinical heterogeneity within the PE group (81). Finally, there

are a number of previously found miRNAs (96) that we could not

associate with PE. In some cases, such as for the members of the

placenta-specific C19MC miRNA cluster, this is due to the early

gestation samples when the placenta is less developed; in other cases,

certain miRNAs may be predominantly present in the serum but not

in the exosomes, such as the hsa-miR-146b-5p (97). On the other

hand, it is of interest that we could identify two miRNA species, hsa-

miR-501-3p and hsa-miR-4535-3p, which have not yet been

associated with PE, suggesting further studies in relation to the

whole PE syndrome, or even to different PE subclasses.

In our study, we also detected overexpressed and underexpressed

exosomal piRNAs in PE samples. When searching for previously

published data, none of these piRNA hits were associated with
B

A

FIGURE 3

Gene Ontology of mRNAs targeted by differentially expressed exosomal miRNAs and piRNAs. GO Biological Process Analysis of 219 mRNAs targeted
by a minimum of four miRNAs (A) and 118 mRNAs targeted by a minimum of two piRNAs (B). The complete list of the analyzed mRNAs is shown in
Supplementary Table 1.
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placental disorders or PE; in fact, we could find published data

concerning only one of the piRNAs, namely hsa_piR_016658. Apart

from generally being detected in body fluids (90, 98) and even in EVs

(99), this piRNA was also found to be overexpressed in the prostate

(100) and endometrial cancer (78), or after hypoxia in adipose-
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derived stromal cells and stem cells (101). Of interest, we detected

decreased exosomal expression of this piRNA which may reflect the

increased oxygen concentrations in the placental blood spaces or the

ischemic environment at the maternal-fetal interface in early

pregnancy in patients who subsequently developed PE (102, 103).
B

A

FIGURE 4

GO Biological Process Analysis was carried out for mRNAs targeted by the identified down-regulated or up-regulated exosomal small RNAs. (A)
Results are shown for mRNAs targeted by a minimum of five up-regulated small RNAs (miRNAs and/or piRNAs). (B) GO categories are shown for
mRNAs targeted by at least one down-regulated small RNA (only piRNAs were found to be down-regulated in this study). The complete list of the
analyzed mRNAs is shown in Supplementary Table 2.
BA

FIGURE 5

qPCR validation of the selected differentially expressed exosomal small RNAs in the validation samples. The box plots show the exosomal expression
levels of hsa_piR_016658 (A) and hsa-miR-122-5p (B) small RNAs for the PE (n=6, red) and control (n=14, blue) samples. -DDCt values are shown,
and black dots represent normalized small RNA expression levels for each individual patient. The corresponding p-values are shown at the top of
each graph and were calculated by a logistic regression model in which the completed gestational weeks at the time of sampling were used as an
independent variable. *: statistical significance at p<0.05.
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Another remarkable finding in our study was that the two other

down-regulated piRNAs, namely hsa_piR_001331 and

hsa_piR_000577, had exactly the same expression values,

suggesting a possible co-regulation, perhaps by being part of the

same piRNA cluster. We have found that hsa_piR_001331 and

hsa_piR_000577 share a 25-nucleotide-long overlapping region at

five different genomic locations (3p26.33 sense, 5q12.1 sense, 5p14.2

anti-sense, 7p21.17 anti-sense and 15q21.2 anti-sense); however,

hsa_piR_001331 has 38 genomic copies, whereas hsa_piR_000577

is represented by only six copies in the genome (http://

pirnabank.ibab.ac.in/). These findings could support the claim that

the piRNAs are in the same cluster, but this would require further

analysis since members of small RNA clusters can also be regulated

individually (104, 105).
4.4 Circulating exosomal small RNAs are
associated with immune processes during
decidualization, implantation and
throughout pregnancy

An important aspect of validation is the analysis of the potential

target genes of the small RNA hits. At first, we treated miRNAs and

piRNAs separately, considering any change in expression,

regardless of its direction (Figure 3). When analyzing the GO

classifications, the identified miRNA targets were particularly

enriched in genes associated with decidualization (Supplementary

Table 1), some of which have already been implicated in placental

disorders. Among them, cyclooxygenase-2 (COX-2, also known as

PTGS2) is up-regulated in the first trimester in healthy pregnancies

and its deficiency leads to the loss of implantation and

decidualization, as well as to PE or to preterm birth (106, 107).

Prostacyclin, an end product of COX-2, is formed during

inflammation and is a key target of non-steroidal anti-

inflammatory drugs such as aspirin, the most widely used

preventive treatment to reduce the incidence of the most severe

preterm PE subtype (108–112). Stanniocalcin-1 (STC-1) is a

pleiotropic hormone that is important for maintaining female

reproductive health and shows a sharp placental expression peak

in mid-gestation (113), and its increased mRNA level has been

detected in pregnancy complications such as PE or gestational

diabetes mellitus (114, 115). Another important target gene is the

transmembrane protein connexin-43 (GJA-1), which is vital for

direct intracellular communication and also in placental

development and trophoblast differentiation by supporting

appropriate vasculature in the placental bed, and its dysregulation

has been suggested to have a potential role in the development of PE

(116, 117).
4.5 Differentially expressed piRNAs may
regulate nitrative and oxidative stress
responses in PE

The top GO category for mRNA targets of differentially

expressed piRNAs was ‘cellular response to reactive nitrogen
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species’. Abnormal trophoblast invasion into the uterine spiral

arteries leads to increased ischemia and pro-inflammatory

changes in the placenta, resulting in oxidative and nitrative

stress and leading to the accumulation of nitrotyrosine, a

potential biomarker associated with PE and IUGR (118). mRNA

hits from our analysis revealed key players in the oxidative and

nitrative stress responses. These include the CASP8 and FADD

Like Apoptosis Regulator (CFLAR), an essential activator of the

extrinsic pathway of apoptosis (119), and the PPARG Coactivator

1 Alpha (PPARGC1A), a master regulator of mitochondrial

biogenesis and antioxidant defense (120), with decreased protein

levels in the placenta in PE, especially in cases associated with

IUGR (121). In addition, we also identified the Methionine

synthase (MTR) gene which had an increased expression in PE

and is clearly associated with the compensation of methionine-

homocysteine metabolism caused by oxidative stress in this

obstetrical syndrome (122, 123).
4.6 Exosomal small RNAs are involved in
additional vascular and
immunological processes

In a subsequent analysis, we grouped the mRNA targets based

on either upregulation or downregulation of the small RNA hits

(treating miRNAs and piRNAs together, Figure 4). Here, the GO

categories are enriched in decidualization, placental development,

and embryo implantation, and the top target genes show a high

overlap with the previous analysis above, including COX2, GJA1

and STC1. In addition, however, we found three members of the

calcineurin-NFAT signaling cascade and inositol-phosphate-

mediated signaling pathways that play central roles in different

aspects of appropriate immune responses such as T-cell activated

adaptive immune response (124) and in B cell immunity (125). The

identified targets are the ATPase plasma membrane Ca2+

transporter (ATP2B4, also known as PMCA4), the Protein

Phosphatase 3 Regulatory Subunit B Alpha (PPP3R1, also known

as CNB1), and the Homer Scaffold Protein 2 (HOMER2), all of

which are involved in T-cell regulation (126–128). Moreover, in

relation to pregnancy disorders, ATP2B4 had decreased mRNA and

protein levels in syncytiotrophoblasts cultured from preeclamptic

placental tissue (129), whereas PPP3R1mRNA levels were increased

in PE-associated placentas (130).

Finally, we could identify gene hits from the GO category of the

‘blood vessel endothelial cell migration’ pathway: these included the

already-found ATP2B4 and COX2 genes, but also Neurofibromin1

(NF1), a gene mutated in neurofibromatosis 1 patients, who have a

higher risk of developing PE and IUGR (131). The correlation of the

identified GO categories and target genes with the examined PE

disease subtype supports the relevance of the identified small RNA

species in the circulating exosomes. However, further studies are

needed to investigate whether these exosomal miRNAs and piRNAs

can in fact reach relevant tissues (e.g. placenta, endothelial cells, or

even embryo-derived cells) and whether the revealed target mRNAs

are regulated by these delivered small RNAs in the specific

cell types.
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5 Summary and conclusion

Through comparative analysis of normal and preterm PE

pregnancies, we could identify several exosomal miRNAs and

piRNAs as potential early biomarkers for this severe PE subtype.

Due to the strict selection criteria, we could analyze a relatively

small number of cases but the stringent bioinformatic analysis and

GO classification results validated our rigorous approach and

showed a clear connection between these RNA expression levels

and placental dysfunction in PE. Although the samples examined

represent the first trimester of pregnancy when the placenta is not

yet fully developed, the importance and clear advantage is that the

small RNA profiles revealed may still indicate the early steps of the

pathogenesis at a time when the clinical symptoms of PE cannot yet

be detected using the currently accepted medical examinations.

However, the identified small RNAs, especially the most promising

hsa_piR_016658, would still require further validation in a larger

number of patients. In addition, our approach to exosomal isolation

and analysis may be problematic if the available blood sample

volumes are limited; from this aspect, specific qPCR analysis

directly on blood samples may be more practical, or the analysis

of other body fluids (such as urine samples) could be considered.

On the other hand, future studies should also focus on the target

genes of the recently identified small RNAs and the applicability of

other small RNA subtypes, such as Y-RNAs or tRNA species, which

could also be detected in our sequencing analysis but their detailed

analysis was beyond the scope of our current study.

In conclusion, our rigorously designed study yielded

meaningful results from a small but homogeneous patient group.

The differentially expressed small RNAs in circulating maternal

exosomes act on physiological pathways involved in normal

decidualization, placentation, maternal-fetal immune interactions,

and fetal development, all of which are disrupted in preterm PE

associated with IUGR. Therefore, our small RNA hits are not only

suitable biomarker candidates for future investigations, but the

revealed biological pathways may also inform us about the

complex pathology during the development of this very severe

subtype of PE. Furthermore, the small RNA species identified,

together with their potential targets could contribute to the

development of new treatment possibilities, especially for women

in the early stages of pregnancy.
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Dániel Győrffy for statistical advice (all at the HUN-REN

Research Centre for Natural Sciences, Budapest, Hungary).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1321191
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gál et al. 10.3389/fimmu.2024.1321191
The reviewer BN declared a shared affiliation with the author

GO to the handling editor at the time of the review.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or
Frontiers in Immunology 12
claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1321191/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Correlation between gestational weeks at sampling time and exosomal small
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