2,036 research outputs found
Qubit quantum-dot sensors: noise cancellation by coherent backaction, initial slips, and elliptical precession
We theoretically investigate the backaction of a sensor quantum dot with
strong local Coulomb repulsion on the transient dynamics of a qubit that is
probed capacitively. We show that the measurement backaction induced by the
noise of electron cotunneling through the sensor is surprisingly mitigated by
the recently identified coherent backaction [PRB 89, 195405] arising from
quantum fluctuations. This renormalization effect is missing in semiclassical
stochastic fluctuator models and typically also in Born-Markov approaches,
which try to avoid the calculation of the nonstationary, nonequilibrium state
of the qubit plus sensor. Technically, we integrate out the current-carrying
electrodes to obtain kinetic equations for the joint, nonequilibrium
detector-qubit dynamics. We show that the sensor-current response, level
renormalization, cotunneling, and leading non-Markovian corrections always
appear together and cannot be turned off individually in an experiment or
ignored theoretically. We analyze the backaction on the reduced qubit state -
capturing the full non-Markovian effects imposed by the sensor quantum dot on
the qubit - by applying a Liouville-space decomposition into quasistationary
and rapidly decaying modes. Importantly, the sensor cannot be eliminated
completely even in the simplest high-temperature, weak-measurement limit: The
qubit state experiences an initial slip that persists over many qubit cycles
and depends on the initial preparation of qubit plus sensor quantum dot. A
quantum-dot sensor can thus not be modeled as a 'black box' without accounting
for its dynamical variables. We furthermore find that the Bloch vector relaxes
(T1) along an axis that is not orthogonal to the plane in which the Bloch
vector dephases (T2), blurring the notions of T1 and T2 times. Finally, the
precessional motion of the Bloch vector is distorted into an ellipse in the
tilted dephasing plane.Comment: This is the version published in Phys. Rev.
Solid state image sensor research
Solid state image sensing devices developed for meteorological satellite application
Spin quadrupoletronics: moving spin anisotropy around
We show that spin anisotropy can be transferred to an isotropic system by
transport of spin quadrupole moment. We derive the quadrupole moment current
and continuity equation and study a high-spin valve structure consisting of two
ferromagnets coupled to a quantum dot probing an impurity spin. The quadrupole
back-action on their coupled spin results in spin torques and anisotropic spin
relaxation which do not follow from standard spin current considerations. We
demonstrate the detection of the impurity spin by charge transport and its
manipulation by electric fields.Comment: v2 updated arXiv reference [6
Development of a breadboard multielement star detector Final report, Mar. 1967 - Sep. 1968
Breadboard model of star detector device consisting of thin film photosensitive and high dielectric material
On Approximating Restricted Cycle Covers
A cycle cover of a graph is a set of cycles such that every vertex is part of
exactly one cycle. An L-cycle cover is a cycle cover in which the length of
every cycle is in the set L. The weight of a cycle cover of an edge-weighted
graph is the sum of the weights of its edges.
We come close to settling the complexity and approximability of computing
L-cycle covers. On the one hand, we show that for almost all L, computing
L-cycle covers of maximum weight in directed and undirected graphs is APX-hard
and NP-hard. Most of our hardness results hold even if the edge weights are
restricted to zero and one.
On the other hand, we show that the problem of computing L-cycle covers of
maximum weight can be approximated within a factor of 2 for undirected graphs
and within a factor of 8/3 in the case of directed graphs. This holds for
arbitrary sets L.Comment: To appear in SIAM Journal on Computing. Minor change
- …