426 research outputs found

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    Deep borehole disposal of nuclear waste: US perspective

    Full text link
    Radioactive waste disposal in deep boreholes may be more "ready" than disposal in mined geologic repositories since mankind has greater experience operating small deep holes - boreholes, than big shallow holes - mines. There are several thousand precedents for constructing >2 km deep boreholes and several hundred precedents for disposing long-lived wastes in boreholes. Borehole disposal is likely to be faster, cheaper, and more flexible than mined disposal, while also offering greater long-term isolation. Isolation would rely on the great depth, water density gradients, and reducing conditions to prevent vertical movement of waste up the borehole.Comment: 24 pages, 8 figure

    Crop Residues

    Get PDF
    Crop residues (e.g., corn stover and small grain straw) are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems, this chapter will review several important attributes of this “herbaceous” feedstock. Crop residues are potential feedstock sources for second-generation biofuel production. These materials, along with dedicated energy crops (e.g., switchgrass [Panicum virgatum L.], Miscanthus [Miscanthus × giganteus]), are considered to have greater potential for biofuel production than current first-generation feedstock (i.e., corn grain) [1–3]. Production of ethanol and other fuel sources from these lignocellulosic materials is receiving increased financial support for research and development [4–6]. Furthermore, biofuel production from crop residues provides a multipurpose land use opportunity where grain can be harvested to meet food and feed demands, while a sustainable portion of the residues provide a potentially available biofuel feedstock. Corn stover, the aboveground plant material left in fields after grain harvest,was identified as an important biomass source in the Billion-Ton Study (2005 BTS) [7]. The vast area from which this feedstock could potentially be harvested was confirmed by USDA National Agricultural Statistics Service (NASS) data showing that between 2005 and 2011, corn was harvested in the U.S.A. from an average of 32 460 000 ha each year [8]. Wheat straw was the other dominant residue identified in the 2005 BTS, and from 2005 through 2011, wheat was harvested in the U.S.A. from an average of 20 037 000 ha each year. Based on thesevast harvest areas, the 2005 BTS projected total annual corn and wheat residue production to be approximately 250 and 90 million Mg, respectively, with a sustainable removal of 82 and 12 million Mg after accounting for that needed to mitigate wind and water erosion. The 2005 BTS projections of available crop residue immediately raised concern among many soil scientists because harvesting residues as a biofuel feedstock or for any other purpose (e.g. animal feed) will decrease annual carbon input and may gradually diminish soil organic carbon (SOC) to a level that threatens the soil’s production capacity [9]. Concerns within the U.S. Corn/Soybean Belt were accentuated knowing that for many soils artificial drainage, intensive annual tillage, and less diverse plant communities have already reduced SOC by 30–50% when compared to pre-cultivation levels [10]. Returning a portion of crop residues to replenish SOC was deemed essential for sustainability [11–16] because crop residues influence many vital soil, water, and air functions. Many scientists stated that caution must be used to ensure that harvesting residue for any use does not compromise ecosystem services or decrease overall soil productivity. Furthermore, others argued that for several current cropping systems, soil erosion and organic matter depletion indicate that crop residue returns to the soil are already insufficient [17, 18]. As a result of soil resource sustainability concerns raised by the 2005 BTS, a follow-up report (2011 BT2) was developed by the U.S. Department of Energy (DOE) to include (1) a spatial, county-by-county inventory of potentially available primary feedstocks, (2) price and available quantities (i.e. supply curves) for individual feedstocks, and (3) a more rigorous treatment and modeling of resource sustainability [19]. The 2011 BT2 recognizes the importance of crop yield variation and the need to balance the economic drivers with ecologically limiting factors [20]. Table 8.1 presents some of the estimated feedstock supplies for various crop residues at selected price levels. These values are also consistent with several other estimates including those used for the U.S. National Academy of Science (NAS) study on Liquid Transportation Fuels from Coal and Biomass [21]. The 2011 BT2 also provides a more realistic overview of total crop residue availability and sets some achievable research and development goals for available feedstock supplies by creating various production scenarios that strive for higher crop yields and integrate multiple cellulosic energy crops into potential production systems. Several assessments examining the multiple roles that crop residues have for maintaining multiple ecological functions have been published since the 2005 BTS [22–30]. Therefore, this chapter focuses on current corn stover and wheat straw research designed to address concerns raised by those previous reviews and to help ensure that commercial bioenergy develops in an economically, environmentally, and socially acceptable manner

    Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover

    Get PDF
    Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (∼50% and ∼90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg ha−1 (155 and 186 bu acre−1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg ha−1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg ha−1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted

    Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

    Get PDF
    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences–Superfund Basic Research Program workshop titled “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure,” convened by the Dartmouth Toxic Metals Research Program on 15–16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans

    Creating an Instrument to Measure Student Response to Instructional Practices

    Full text link
    BackgroundCalls for the reform of education in science, technology, engineering, and mathematics (STEM) have inspired many instructional innovations, some research based. Yet adoption of such instruction has been slow. Research has suggested that students’ response may significantly affect an instructor’s willingness to adopt different types of instruction.PurposeWe created the Student Response to Instructional Practices (StRIP) instrument to measure the effects of several variables on student response to instructional practices. We discuss the step‐by‐step process for creating this instrument.Design/MethodThe development process had six steps: item generation and construct development, validity testing, implementation, exploratory factor analysis, confirmatory factor analysis, and instrument modification and replication. We discuss pilot testing of the initial instrument, construct development, and validation using exploratory and confirmatory factor analyses.ResultsThis process produced 47 items measuring three parts of our framework. Types of instruction separated into four factors (interactive, constructive, active, and passive); strategies for using in‐class activities into two factors (explanation and facilitation); and student responses to instruction into five factors (value, positivity, participation, distraction, and evaluation).ConclusionsWe describe the design process and final results for our instrument, a useful tool for understanding the relationship between type of instruction and students’ response.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/1/jee20162_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/2/jee20162.pd
    corecore