460 research outputs found

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover

    Get PDF
    Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (∼50% and ∼90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg ha−1 (155 and 186 bu acre−1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg ha−1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg ha−1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    The participatory turn in radioactive waste management:Deliberation and the social-technical divide

    Get PDF
    National policies for long-term management of radioactive waste have for decades been driven by technical experts. The pursuit of these technocratic policies led in many countries to conflict with affected communities. Since the late 1990s, however, there has been a turn to more participatory approaches. This participatory turn reflects widespread acknowledgement in the discourse of policy actors and implementing organisations of the importance of social aspects of radioactive waste management and the need to involve citizens and their representatives in the process. This appears to be an important move towards democratisation of this particular field of technological decision making but, despite these developments, technical aspects are still most often brought into the public arena only after technical experts have defined the ‘problem’ and decided upon a ‘solution’. This maintains a notional divide between the treatment of technical and social aspects of radioactive waste management and raises pressing questions about the kind of choice affected communities are given if they are not able to debate fully the technical options. The article aims to contribute to better understanding and addressing this situation by exploring the complex entanglement of the social and the technical in radioactive waste management policy and practice, analysing the contingent configurations that emerge as sociotechnical combinations. Drawing upon empirical examples from four countries that have taken the participatory turn - Belgium, Slovenia, Sweden and the United Kingdom – the article describes the different ways in which sociotechnical combinations have been constructed, and discusses their implications for future practice

    Deep borehole disposal of nuclear waste: US perspective

    Full text link
    Radioactive waste disposal in deep boreholes may be more "ready" than disposal in mined geologic repositories since mankind has greater experience operating small deep holes - boreholes, than big shallow holes - mines. There are several thousand precedents for constructing >2 km deep boreholes and several hundred precedents for disposing long-lived wastes in boreholes. Borehole disposal is likely to be faster, cheaper, and more flexible than mined disposal, while also offering greater long-term isolation. Isolation would rely on the great depth, water density gradients, and reducing conditions to prevent vertical movement of waste up the borehole.Comment: 24 pages, 8 figure

    Crop Residues

    Get PDF
    Crop residues (e.g., corn stover and small grain straw) are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems, this chapter will review several important attributes of this “herbaceous” feedstock. Crop residues are potential feedstock sources for second-generation biofuel production. These materials, along with dedicated energy crops (e.g., switchgrass [Panicum virgatum L.], Miscanthus [Miscanthus × giganteus]), are considered to have greater potential for biofuel production than current first-generation feedstock (i.e., corn grain) [1–3]. Production of ethanol and other fuel sources from these lignocellulosic materials is receiving increased financial support for research and development [4–6]. Furthermore, biofuel production from crop residues provides a multipurpose land use opportunity where grain can be harvested to meet food and feed demands, while a sustainable portion of the residues provide a potentially available biofuel feedstock. Corn stover, the aboveground plant material left in fields after grain harvest,was identified as an important biomass source in the Billion-Ton Study (2005 BTS) [7]. The vast area from which this feedstock could potentially be harvested was confirmed by USDA National Agricultural Statistics Service (NASS) data showing that between 2005 and 2011, corn was harvested in the U.S.A. from an average of 32 460 000 ha each year [8]. Wheat straw was the other dominant residue identified in the 2005 BTS, and from 2005 through 2011, wheat was harvested in the U.S.A. from an average of 20 037 000 ha each year. Based on thesevast harvest areas, the 2005 BTS projected total annual corn and wheat residue production to be approximately 250 and 90 million Mg, respectively, with a sustainable removal of 82 and 12 million Mg after accounting for that needed to mitigate wind and water erosion. The 2005 BTS projections of available crop residue immediately raised concern among many soil scientists because harvesting residues as a biofuel feedstock or for any other purpose (e.g. animal feed) will decrease annual carbon input and may gradually diminish soil organic carbon (SOC) to a level that threatens the soil’s production capacity [9]. Concerns within the U.S. Corn/Soybean Belt were accentuated knowing that for many soils artificial drainage, intensive annual tillage, and less diverse plant communities have already reduced SOC by 30–50% when compared to pre-cultivation levels [10]. Returning a portion of crop residues to replenish SOC was deemed essential for sustainability [11–16] because crop residues influence many vital soil, water, and air functions. Many scientists stated that caution must be used to ensure that harvesting residue for any use does not compromise ecosystem services or decrease overall soil productivity. Furthermore, others argued that for several current cropping systems, soil erosion and organic matter depletion indicate that crop residue returns to the soil are already insufficient [17, 18]. As a result of soil resource sustainability concerns raised by the 2005 BTS, a follow-up report (2011 BT2) was developed by the U.S. Department of Energy (DOE) to include (1) a spatial, county-by-county inventory of potentially available primary feedstocks, (2) price and available quantities (i.e. supply curves) for individual feedstocks, and (3) a more rigorous treatment and modeling of resource sustainability [19]. The 2011 BT2 recognizes the importance of crop yield variation and the need to balance the economic drivers with ecologically limiting factors [20]. Table 8.1 presents some of the estimated feedstock supplies for various crop residues at selected price levels. These values are also consistent with several other estimates including those used for the U.S. National Academy of Science (NAS) study on Liquid Transportation Fuels from Coal and Biomass [21]. The 2011 BT2 also provides a more realistic overview of total crop residue availability and sets some achievable research and development goals for available feedstock supplies by creating various production scenarios that strive for higher crop yields and integrate multiple cellulosic energy crops into potential production systems. Several assessments examining the multiple roles that crop residues have for maintaining multiple ecological functions have been published since the 2005 BTS [22–30]. Therefore, this chapter focuses on current corn stover and wheat straw research designed to address concerns raised by those previous reviews and to help ensure that commercial bioenergy develops in an economically, environmentally, and socially acceptable manner
    corecore