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Crop Residues

Douglas L. Karlen1 and David R. Huggins2

1National Laboratory for Agriculture and the Environment, USDA Agricultural

Research Service, U.S.A.
2Land Management and Water Conservation Research Unit, USDA Agricultural

Research Service, U.S.A.

8.1 Overview

Crop residues (e.g., corn stover and small grain straw) are sometimes excluded when
discussing cellulosic energy crops per se, but because of the vast area upon which they are
grown and their current role in the development of cellulosic energy systems, this chapter
will review several important attributes of this “herbaceous” feedstock. Crop residues are
potential feedstock sources for second-generation biofuel production. These materials,
along with dedicated energy crops (e.g., switchgrass [Panicum virgatum L.], Miscanthus
[Miscanthus × giganteus]), are considered to have greater potential for biofuel production
than current first-generation feedstock (i.e., corn grain) [1–3]. Production of ethanol and
other fuel sources from these lignocellulosic materials is receiving increased financial
support for research and development [4–6]. Furthermore, biofuel production from crop
residues provides a multipurpose land use opportunity where grain can be harvested to meet
food and feed demands, while a sustainable portion of the residues provide a potentially
available biofuel feedstock.
Corn stover, the aboveground plantmaterial left in fields after grain harvest, was identified

as an important biomass source in the Billion-Ton Study (2005 BTS) [7]. The vast area
fromwhich this feedstock could potentially be harvested was confirmed by USDANational
Agricultural Statistics Service (NASS) data showing that between 2005 and 2011, corn was
harvested in the U.S.A. from an average of 32 460 000 ha each year [8]. Wheat straw was
the other dominant residue identified in the 2005 BTS, and from 2005 through 2011, wheat
was harvested in the U.S.A. from an average of 20 037 000 ha each year. Based on these
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132 Cellulosic Energy Cropping Systems

vast harvest areas, the 2005 BTS projected total annual corn and wheat residue production
to be approximately 250 and 90 million Mg, respectively, with a sustainable removal of 82
and 12 million Mg after accounting for that needed to mitigate wind and water erosion.
The 2005 BTS projections of available crop residue immediately raised concern among

many soil scientists because harvesting residues as a biofuel feedstock or for any other
purpose (e.g. animal feed) will decrease annual carbon input and may gradually diminish
soil organic carbon (SOC) to a level that threatens the soil’s production capacity [9].
Concerns within the U.S. Corn/Soybean Belt were accentuated knowing that for many soils
artificial drainage, intensive annual tillage, and less diverse plant communities have already
reduced SOC by 30–50%when compared to pre-cultivation levels [10]. Returning a portion
of crop residues to replenish SOC was deemed essential for sustainability [11–16] because
crop residues influence many vital soil, water, and air functions. Many scientists stated that
caution must be used to ensure that harvesting residue for any use does not compromise
ecosystem services or decrease overall soil productivity. Furthermore, others argued that
for several current cropping systems, soil erosion and organic matter depletion indicate that
crop residue returns to the soil are already insufficient [17, 18].
As a result of soil resource sustainability concerns raised by the 2005 BTS, a follow-up

report (2011 BT2) was developed by the U.S. Department of Energy (DOE) to include
(1) a spatial, county-by-county inventory of potentially available primary feedstocks, (2)
price and available quantities (i.e. supply curves) for individual feedstocks, and (3) a
more rigorous treatment and modeling of resource sustainability [19]. The 2011 BT2
recognizes the importance of crop yield variation and the need to balance the economic
drivers with ecologically limiting factors [20]. Table 8.1 presents some of the estimated
feedstock supplies for various crop residues at selected price levels. These values are also
consistent with several other estimates including those used for the U.S. National Academy
of Science (NAS) study on Liquid Transportation Fuels from Coal and Biomass [21].
The 2011 BT2 also provides a more realistic overview of total crop residue availability
and sets some achievable research and development goals for available feedstock supplies
by creating various production scenarios that strive for higher crop yields and integrate
multiple cellulosic energy crops into potential production systems.
Several assessments examining the multiple roles that crop residues have for maintaining

multiple ecological functions have been published since the 2005 BTS [22–30]. Therefore,
this chapter focuses on current corn stover and wheat straw research designed to address

Table 8.1 Estimated 2012 crop residue supplies (Mg) at selected prices using the 2011
BT2 baseline management scenario data.

Price ($/Mg)

Crop residue 40 50 60

Barley straw 356 088 1 289 300 1 536 821
Corn stover 17 064 661 66 172 906 77 444 014
Oat straw 17 052 17 505 17 505
Sorghum stover 565 515 880 516 996 884
Wheat straw 6 062 751 16 759 637 20 481 511

Total 24 066 067 85 119 864 100 476 735



Crop Residues 133

concerns raised by those previous reviews and to help ensure that commercial bioenergy
develops in an economically, environmentally, and socially acceptable manner.

8.2 Corn Stover

Following the release of the 2005BTS, a collaborative research team1 (Table 8.2)withmem-
bers from the USDA-Agricultural Research Service (ARS) Renewable Energy Assessment
Project (REAP) and several universities was established as part of the Sun Grant Regional
Partnership (RP) to determine the amount of corn stover that could be harvested in a sus-
tainable manner [31]. The core treatments included no tillage or the least amount possible
for economic crop production [e.g. Coastal Plain soils near Florence, SC, have a naturally
occurring hardpan (E horizon)], so in-row subsoiling is needed each year prior to planting],
three residue removal rates (none, approximately half, and the maximum mechanically
collectable amount), and four replications. Leveraging the Sun Grant Partnership funds
with long-term ARS research expanded both the number of treatments being evaluated as
well as the number of years of study. For example, at Mead, NE, the rainfed and irrigated
studies were initiated in 1999 and 2001, respectively. AtMorris,MN, the studywas initiated
in 2005, taking advantage of a tillage experiment established in 1995. At Ames, IA, two
studies were initiated in 2005 and one in 2008. Additional management practices being
evaluated at one or more of the locations include alternate tillage practices (e.g. chisel plow
or strip-tillage), use of cover crops, rotation with soybean, harvesting of cover crops as well
as the corn stover, and application of biochar.
For each experimental site, soil samples were collected to a depth of 1.0–1.5 m, divided

into increments of 0–5, 5–15, 15–30, 30–60, 60–90 and 90–150 cm, and analyzed for
several soil quality indicators [e.g. total organic carbon (TOC), total nitrogen, pH, bulk
density, and soil-test phosphorus (P) and potassium (K)]. The SoilManagement Assessment
Framework (SMAF) was used to evaluate and combine the different indicators, and thus
establish a baseline soil quality index that could be used to determine long-term effects of
the various stover harvest rates [15]. To date, TOC and soil-test potassium have had the
lowest indicator scores at several RP and other REAP sites [16]. Longer-term data leveraged
from the REAP plots at Brookings showed that through the first eight years TOC decreased
as residue removal rates increased (Figure 8.1). A more detailed examination of samples
collected in 2008 showed higher organic carbon content in all aggregate size classes from
the low removal treatment than in the high removal treatment (Figure 8.2). Higher total
protein was also measured in soil samples from the low removal treatment than from the
high removal treatment.
Whole plant samples were collected and fractionated into bottom, top, cob, and grain

fractions. Plant parts lying on the ground within the sampling area (1.5 m2) were also
collected. Harvest index values and total nutrient uptakewere collected using those samples.
Stover was collected using a variety of mechanical harvesting techniques, all resulting in
post-harvest soil surface cover differences, such as those shown for the Lamberton, MN,

1 Funded in part by the North Central Regional Sun Grant Center at South Dakota State University through a
grant provided by the US Department of Energy Office of Biomass Programs under award number DE-FC36-
05GO85041.
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Figure 8.1 Eight-year residue removal effect on SOC in the top 15 cm (6 inches) near Brookings, SD. (Figure
provided by Shannon Osborne, USDA-ARS).

site in the autumn (Figure 8.3) or the subsequent spring (Figure 8.4) following either
conventional (chisel plow) or strip-tillage.
Additional data being collected at some but not all RP locations include greenhouse gas

(GHG) emissions (CO2 and nitrous oxide, N2O), nitrate nitrogen (NO3-N) and phosphorus
concentrations in water leaching through the soil profile, microbial biomass carbon, partic-
ulate organic matter, glomalin-related soil proteins, the humic acid fraction of soil organic
matter, aggregate stability, lignin, cellulose and other structural carbohydrates, and energy
values for the various stover fractions. Collectively, these measurements are providing the
data needed to develop the sustainable stover harvest strategies outlined through modeling
in the 2011 BT2 report.
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Figure 8.2 Residue removal effects on organic carbon content in six soil aggregate size classes from the
surface 5 cm near Brookings, SD. (Figure provided by Shannon Osborne, USDA-ARS).
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Low cut – (> 4.5 t/ha) High cut – (~3.4 t/ha) No Removal

Strip-Tillage Treatment

Conventional (Chisel Plow) Treatment

Figure 8.3 Autumn (November 2010) soil cover following various corn stover harvest treatments and either
conventional (chisel plow) or strip-tillage at the Lamberton, MN, research site. (Photos provided by John Baker,
USDA-ARS).

Low cut – (> 4.5 t/ha) High cut – (~3.4 t/ha) No Removal

Strip-Tillage Treatment

Conventional (Chisel Plow) Treatment

Figure 8.4 Spring 2011 soil cover following various corn stover harvest treatments and either conventional
(chisel plow) or strip-tillage in autumn 2010 at the Lamberton, MN, research site. (Photos provided by John
Baker, USDA-ARS).
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Figure 8.5 Soil CO2 flux versus soil temperature for all 2010 treatments at the Ames, IA, site. Each point
represents the average of eight measurements (4 mid-row, 4 in-row). (Figure provided by Tom Sauer, USDA-
ARS).

One example (Figure 8.5) of the information being gathered shows the dependence of
CO2 flux on soil temperature. The relatively strong logarithmic relationship suggests that a
temperature-based interpolation method (Q10) will be most effective for estimating annual
CO2 fluxes. These results also suggest that management practices which result in warmer
soil temperatures, for example, through residue removal, may lead to higher CO2 fluxes.
However, this effect will likely be offset by lower amount of available carbon substrate,
that is, residue, so that the overall effect of stover harvest on annual CO2 flux will likely be
a reduction in treatment differences.
With regard to N2O, Figure 8.6 shows that precipitation strongly influences the flux by

reducing oxygen availability and stimulating denitrification. The lag between precipitation
and maximum emission is evident, and is consistent with reports in the literature suggesting
that the nitrous oxide flux is not maximized when the soil is saturated, but rather when
water-filled pores space (WFPS) is about 65%. Annual sums of net N2O emission at this
site were highest for the non-removal treatment and lowest for the maximum collectable
treatment. They were also positively correlated with cumulative soil respiration, indicating
that carbon availability was a controlling factor with respect to denitrification.
As recognized in the 2011 BT2 report, crop yield is a major driver associated with

the availability of stover as a potential cellulosic bioenergy feedstock. Corn produces the
highest volume of residue of all the major crops grown in the U.S.A. and because of the
approximate 1:1 relationship between grain yield and aboveground biomass, the volume of
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Figure 8.6 Nitrous oxide and rainfall relationships at the Rice County, MN, site in 2010. The “Ch. 1 to Ch.
6” designations simply refer to the six chambers used for the measurements. (Figure provided by John Baker,
USDA-ARS).

available residue is directly proportional to grain yield (Table 8.3). To date, the RP studies
have shown variable crop yield responses associated with stover harvest. This includes (1)
no detectable short-term (3-year) effects at the Brookings, Florence, Morris, or University
Park sites; (2) trends for increased yield when stover is harvested from no-till treatments
at Ames and Mead; and (3) inconsistent site-differences at the Lamberton, Bauer Farm,
and Rosemount sites in Minnesota. Another five-year assessment of stover removal effects
near Ames, IA [16], showed that the most consistent grain yield response was a 21% lower
average for continuous corn than for rotated corn. That study also showed that harvesting
corn stover increased the average NPK removal by 29, 3 and 34 kg ha−1 for continuous
corn and 42, 3, and 34 kg ha−1 for rotated corn, respectively, when compared to harvesting
only the grain. Furthermore, it showed that the lower half of the corn plant contributed very
little to the total available feedstock biomass because of its high water content and that it
was not a desirable feedstock because of its high potassium, chloride, and ligin content,
as well as an increased amount of soil contamination that interferes with both biochemical
and thermochemical conversion processes.
So, what is the bottom line with regard to harvesting corn stover as a cellulosic feedstock?

Firstly, producers must know their land. Prior to initiating any harvest strategy they should
have good soil-test and nutrient management records for any areas fromwhich crop residues
may be harvested. Obviously, any land with erosion problems must be excluded and efforts
should be made to use available stover in those areas to restore and rebuild the soil.
Harvesting stubble will remove additional nutrients and could affect long-term soil organic
matter levels, erosion rates, and water conservation. Producers should have and be using
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Table 8.3 Projected available stover as a function of corn grain yield, after accounting for the amount of
crop residue needed to protect soil resources against erosion and to sustain soil organic matter levels as
suggested by Wilhelm et al. (2007) [13]. (Based on [13]. With permission Copyright C© 2007, American
Society of Agronomy).

Grain yield at 15.5%
moisture Dry

stover
Total

Stovera
Availableb

CC Stover
Availablec

CS Stover
Total

Available
Bushels
per acre kg ha−1 Mg ha−1 Million Mg Million Mg Million Mg Million Mg

150 9416 7.96 155 36.9 0.3 37
160 10 044 8.49 165 44.1 3.4 48
170 10 672 9.02 176 51.4 6.5 58
180 11 300 9.55 186 58.6 9.6 68
190 11 927 10.08 196 65.8 12.7 79
200 12 555 10.61 207 73.1 15.8 89
210 13 183 11.14 217 80.3 18.9 99
220 13 811 11.67 227 87.5 22.0 110
230 14 438 12.20 238 94.8 25.1 120
240 15 066 12.73 248 102.0 28.2 130
250 15 694 13.26 258 109.2 31.3 141
260 16 322 13.79 269 116.5 34.4 151
270 16 950 14.32 279 123.7 37.5 161
280 17 577 14.85 289 130.9 40.6 172
290 18 205 15.38 300 138.1 43.7 182
300 18 833 15.91 310 145.4 46.8 192

aAssuming stover collection from 60% of the 2005–2011 U.S.A. harvested corn area (32 460 000 ha) (i.e. 19 476 000 ha).
This is approximately the area of corn production in Illinois, Iowa, Indiana, Nebraska, and Minnesota.
bAvailable after subtracting 5.25 Mg ha−1 for maintaining soil organic matter in continuous corn (CC) on 70% of the harvested
area.
cAvailable after subtracting 7.90 Mg ha−1 for maintaining soil organic matter in a corn-soybean rotation on 30% of the
harvested area.

long-term nutrient management and soil conservation plans. They should also be using the
least amount of tillage possible. Again, avoid stover harvest from highly erosive areas and
use routine soil-test and plant analyses to monitor the response on a routine basis. Finally,
consider adopting other conservation practices, such as the inclusion of annual or perennial
cover crops, buffer strips, and crop rotation, in order to enhance the sustainability of
stover harvest.

8.3 Wheat Straw

Cereal grains (wheat, barley, oats, sorghum and rice) are widely grown in the United
States and wheat straw constituted 20–25% of potential 2012 U.S. biofuel feedstocks
(Table 8.1). Agronomic considerations for determining supplies of wheat straw that can
be harvested sustainably include: (1) annual wheat straw yield and its stability; (2) straw
harvesting efficiencies; (3) crop rotation and tillage practices for assessing soil conservation
and sustainability factors; (4) nutrient removal and fertilizer replacement values; (5) site-
specific field evaluations including economic factors that inform decision support systems;
and (6) competing economic uses for harvested cereal straw. Addressing these issues
has been the focus of several recent research efforts including the Sun Grant partnership
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[32, 33], the U.S. Pacific Northwest, the Climate Friendly FarmingTM project [34], and the
USDA Solutions To Economic and Environmental Problems (STEEP) grant program [35].
In the United States, the amount of wheat straw potentially available for use as a biofuel

feedstock was assessed through the Sun Grant partnership where the team used USDA-
NASS county level grain yield data from 1999 through 2008 [32]. Grain yield data were
combined with the harvest index (HI), the ratio of grain yield to total aboveground biomass
(grain plus straw) at harvest, to estimate straw yields. The HI of wheat, however, is not
a constant value [32], with reported values ranging from 0.20 to 0.70 with an average
across locations and years of 0.44. This average is greater than the historic HI value of
0.375 commonly used for winter wheat [19], presumably because newer grain varieties are
more efficient and produce less straw per unit of grain than older varieties. The HI data
have important implications for estimating the amount of straw produced based on grain
yield because an increase in HI from 0.375 to 0.44 results in a 24% reduction in estimated
wheat straw yield. Consequently, generating straw yield maps for the United States based
on grain yield can only be considered as a first step toward evaluating straw feedstocks
for the purpose of siting biofuel plants. In addition to overall production, understanding
the year-to-year stability of straw yield is also an important consideration for assessing
feedstock supplies. Karow [32] noted that significant annual fluctuations in wheat straw
stocks could occur where some areas with high average straw yields also had years with no
or limited wheat straw yield.
Overall straw yield serves as a starting point for quantifying available biofuel feedstock

that can be sustainably harvested. Factors such as straw harvesting efficiencies, residues
(straw) required for controlling wind and water erosion, and for maintaining soil produc-
tivity then reduce the amount of straw that can be harvested without impairing the soil
resource base. Current straw harvesting efficiencies (e.g. straw baling) are near 50% [7];
however, technological advances could increase residue harvesting efficiencies to around
75% [36]. It is more difficult to assess the multitude of crop rotation and soil tillage factors
that influence how harvesting crop residues will affect soil conservation and other agroe-
cosystem services. In many cases, conservation needs that depend on leaving adequate
cereal residues in the field will be more limiting than current harvesting efficiencies.
In developing estimates for straw feedstocks that could be sustainably harvested, Kerstet-

ter and Lyons [37] estimated that dry straw inputs of 3.4–5.6 Mg ha−1 yr−1 are required for
conservation purposes in the western United States, whereas others [38] reported 4.5 Mg
residue ha−1 yr−1 were needed. These numbers are similar to the 4–5 Mg residue ha−1 yr−1

reported [39] to be required for maintaining soil organic matter in dryland cropping sys-
tems near Pendleton, OR. Assuming a harvest index of 0.4, wheat grain yields of 2.0–3.3
Mg ha−1 yr−1 (3.0–5.0 Mg ha−1 yr−1 of wheat straw) would be needed to supply straw
for conservation needs and harvestable straw estimates would need to be based on grain
yields that exceed this threshold. An important point to realize in these calculations is that
the quantities of residue required for conservation needs are on an annual basis. In many
dryland scenarios, however, continuous wheat is seldom grown and crop rotations often
include a fallow year when no crop or crop residues are produced [4]), or where other crops
such as peas (Pisum sativum) or lentils (Lens culinaris) that produce far less residue than
wheat are grown [14]. Thus, crop residue production must be quantified for an entire rota-
tion in order to assess the average annual residue returns on a rotational basis. Therefore,
in a two-year, wheat-fallow rotation, wheat will need to produce grain yields of 4.0–6.6
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Mg ha−1, twice that reported [37, 38] to meet conservation needs. Unfortunately, many
estimates of wheat straw availability have assumed continuous wheat [37, 38]) production
when assessing conservation needs. This has resulted in “sustainable harvest estimates” for
wheat straw that are greatly inflated when compared to the actual amount available with
other rotations. Accurate estimates of the wheat residue quantities returned to soil are in
themselves insufficient to assess sustainable residue harvest, due to the important influence
of other key factors such as crop rotation and tillage practice.
Evaluating the impact of straw harvest on important soil quality indicators such as SOC,

aggregation, or erosion requires long-term research, since annual changes are generally very
small and can be temporally dynamic. In recognition of this need, the Sun Grant partnership
organized a symposium at the 2009 International American Society of Agronomy (ASA)
meetings entitled “Residue Removal and Soil Quality – Findings fromLong-TermResearch
Plots.” Presentations at this symposium examined residue removal impacts in the context
of various management practices including crop rotation, tillage, applied fertilizer and
irrigation. The articles developed from this symposium were subsequently published in the
Agronomy Journal (Huggins et al. [33]). The series includes results from long-term studies
in Europe, Canada, Australia, and the United States. Key points included an assessment [40]
that reviewed long-term studies from Europe, Australia, and Canada and cautioned against
annual removal of straw because of the potential decrease in SOC. Due to the site-specific
nature of residue harvest, they recommended that straw removal studies be coupled to areas
where residue harvest is actually being considered and to not extrapolate using data from
other areas.
Near Pendleton, OR [41], it was concluded from long-term dryland cropping system

studies that residue removal in this predominantly wheat-fallow area will increase SOC
depletion and that residue harvest will only be sustainable if wheat-fallow was replaced
with continuous cropping and no-tillage. Nafziger and Dunker [42] reported on the long-
term SOC trends under different crop rotation and fertilizer treatments at the University
of Illinois Morrow Plots and emphasized the importance of adequate nutrient levels for
maintaining SOC. Long-term plots at the University of Missouri Sanborn Field showed
that the amount of field residues returned was positively related to SOC (Miles and Brown,
2011 [43]). Gollany et al. (2011) [44] evaluated five long-term field experiments in North
America with the CQESTRmodel and concluded that increasing soil carbon inputs through
manure additions and/or crop intensification as well as reducing tillage were important
strategies for mitigating residue harvest impacts on SOC. Finally, in irrigated systems,
Tarkalson et al. (2011) [30] reported that SOC either increased or remained constant when
wheat residues were removed and hypothesized that belowground biomass production was
important for maintaining or increasing SOC under irrigation. They also pointed out that
irrigated cropping systems in the Pacific Northwest and elsewhere tend to be diversified
with crops such as alfalfa (Medicago sativa), potato (Solan spp.), and sugarbeet (Beta
vulgaris) in addition to wheat and corn, and that very little data on residue removal effects
on SOC is available for those situations.
In combination, these papers conclude that under dryland or rainfed conditions, residue

harvest will negatively impact soil organic matter and associated soil properties; how-
ever, harvest effects will be situation-dependent. Consequently, assessing residue harvest
must be placed in a farming systems context that includes an evaluation of economic and
environmental trade-offs specific for a given farm and location. Future challenges include
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the development of science-based, site-specific decision aids that enable growers to make
economically sound and environmentally sustainable choices regarding residue harvest.
In 2009, USDA-ARS and land grant scientists in the Pacific Northwest established long-

term field studies from a combination of current and new field locations to assess economic
impacts of residue removal as well as effects on soil properties, soil-borne disease and crop
performance [35]. Specific objectives of the project funded through the USDA Solutions To
Economic and Environmental Problems (STEEP) grant program are to: (1) establish or use
existing long-term field sites and assess impacts of wheat residue removal by mechanical
harvest and burning on economic returns and subsequent crop performance; (2) assess
environmental impacts (soil carbon sequestration, nutrient cycling, soil erosion) of residue
removal by mechanical harvest and burning on established sites; and (3) develop field-
scale and regional assessments of economic and environmental trade-offs associated with
harvesting or burning crop residues.
Preliminary STEEP research from theWashington State University (WSU) Cook Agron-

omy Farm (CAF) estimated that the potential site-specific (37-ha field) lignocellulosic
ethanol production from winter wheat residues would range from 813 to 1767 l ha−1 and
average 1356 l ha−1; thus, indicating that targeted harvesting of crop residues would be
an important consideration. Harvesting only winter wheat residues, in a three-year rotation
with spring wheat and spring peas (Pisum sativum), reduced residual carbon inputs to levels
below that required to maintain SOC under conventional tillage practices. This occurred as
a function of both residue removal and inclusion of the low residue producing spring pea
crop in rotation with wheat. Harvesting winter wheat residues under conventional tillage
resulted in negative Soil Conditioning Indices (SCI) throughout the field. In contrast, SCIs
under no-till were positive despite residue harvesting. Increased nutrient removal is also
a consideration associated with harvesting crop residues for any use. In the STEEP study,
the estimated value of N, P, K, and sulfur (S) removed in harvested wheat residue was
$13.71 Mg−1. In high residue producing areas of the field, the estimated value of harvested
residue in fertilizer replacement dollars exceeded $25 ha−1. Based on the potential SOC
impact and increased nutrient cost, we concluded that substantial trade-offs exist in har-
vesting wheat straw for biofuel and that trade-offs should be evaluated on a site-specific
basis. Furthermore, support practices such as crop rotation, reduced tillage and site-specific
nutrient management need to be considered if residue harvest is to be a sustainable option
(Huggins and Kruger, 2010 [14]).
Potential impacts of crop residue removal on SOCwere also simulated for different tillage

and rotation scenarios in the Pacific Northwest using the CropSyst model [45]. Preliminary
outcomes show that harvesting winter wheat residue at the lowest simulated removal rate
(50%) resulted in SOC losses over a 30-year simulation (Figure 8.7). Harvesting less than
50% of the residue was not considered to be practical or a cost-effective use of producer
time and equipment. Use of continuous no-till practices, however, partially compensated
for the effects of winter wheat residue removal on SOC.
From an economic perspective dryland wheat growers typically receive from $3 to

$5 Mg−1 in the Pacific Northwest, from custom operators who harvest the majority of the
straw that is exported from this region. Traditionally, the primary motive for growers to sell
residue is to reduce post-harvest tillage operations, thus reducing their total operating costs
in high-yielding areas by $35–60 ha−1 depending on tillage practices. However, growers
have expressed concerns over long-term impacts of continual straw removal. Once the field
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Figure 8.7 Thirty-year simulated changes in soil organic carbon under a three-year crop rotation of winter
wheat, spring wheat, spring pea using the CropSyst model. Simulations consist of conventional tillage (CT)
and no-tillage (NT) and residue retained (no harvesting) and residue removed where 50% of the winter wheat
residue is harvested (removed) and all other residue (spring wheat and pea) retained.

studies and model simulations are more complete, we will estimate long-term economic
impacts using partial enterprise budgets including nutrient replacement costs over time.
Sun Grant researchers are also evaluating existing straw markets to identify areas of

potential residue harvest [32]. Existing markets for straw can be useful for identifying
where straw is readily and reliably available. Identifying these potential markets is also
important because they may significantly influence straw prices in a future biofuel market.
With this background, the next steps in the DOE Sun Grant project are to identify those
areas in the United States where sustained residue harvest seems feasible and to characterize
those areas by determining: (1) What makes residue harvest possible in these areas? (2) Are
these conditions likely to continue in the future? (3) If the area is irrigated, is the water
source stable andwill electricity costs affect production? (4) Are alternativemarkets already
in place for harvested residues and, if so, at what cost would residues need to be purchased
for biofuel use to be competitive? These and other questions need to be addressed as we
think about residue harvest for biofuel use and the design of needed research and decision
support systems for a residue-based biofuel system [33]).

8.4 Future Opportunities

Harvesting residues from corn and wheat will undoubtedly provide the most plentiful agri-
cultural source of cellulosic biomass for the foreseeable future because of the extensive
area upon which these crops are grown in the U.S.A. However, to achieve a sustainable
harvest strategy only a portion of the total residue produced can be harvested and a suf-
ficient amount must be left behind to meet all other critical ecosystem services and soil
protection requirements. The ultimate challenge of balancing economic drivers favoring
increased harvest to meet conversion demand with minimal transportation cost against
the ecologically limiting factors (Figure 8.8) was well illustrated by Wilhelm et al. [20].
In fields where excess residue interferes with subsequent planting, stand establishment,
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and nitrogen immobilization, partial residue harvest will likely increase subsequent yields.
However, in more rolling and erosive landscapes most of the residue produced will likely
be needed for soil protection. So, how can producers know whether or not they should
consider harvesting their residues?
One strategy being developed with much of the REAP and RP data described above is

the Residue Management Tool. This tool uses various databases and input information such
as (1) the location and spatial extent of the potential harvest area, (2) crop rotations, (3)
tillage management, (4) residue harvest methods, and (5) other land management practices
to establish the potential for a safe and sustainable harvest. Every scenario involving these
factors can be examined with the tool using an integrated systems model for which the input
information can be defined. Using the location and spatial extent (which can be obtained
directly from a combine using output files from the yield monitor), the site-specific crop
yields, soils data, and climate data are assembled from the coupled databases. As the
integrated residue removal tool executes its set of scenario runs, the data management
modules are dynamically accessed to acquire and format the data needed for each of
the models being coupled together. The integrated residue removal tool loops across the
complete set of scenarios pushing each model output to the results database. The tool then
aggregates the results calculated for each of the scenario runs.
Currently, the tool uses models such as RUSLE2 and WEPS to determine the amount

of residue needed to mitigate water and wind erosion, and CQESTR or DAYCENT to
monitor changes in the soil organic matter pool. Nutrient balance models (e.g. IFARM)
and soil-test information help ensure those needs are being met and work is ongoing to
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develop least-limiting water relationships between soil aeration, compaction, and plant
response. By connecting all of these models and supporting input information, various soil
and crop management scenarios can be created and used to develop and guide sustainable
crop residue harvest programs.
The initial version of the Residue Management Tool has been developed and is currently

being evaluated for usewith corn stover feedstock systems.However, since the tool is simply
a computer framework that connects user supplied information about the location and spatial
extent to be investigated, crop rotations, tillage management practices, residue removal
methods, and landmanagement practices, it can be easily adapted for other cellulosic energy
crops by changing or adding additional simulation models to those it currently connects.
Also, by expanding the spatial scale, the tool could be used to design landscapemanagement
scenarios [21] that could utilize multiple cellulosic energy crops to achieve economically
viable feedstock production goalswhile simultaneously providing other ecosystem services,
such as erosion control, nutrient cycling, buffering and filtering, wildlife habitat, carbon
sequestration, and opportunities for rural development. The need for such an integrated
frameworkwas recently recognized by theChicagoCouncil onGlobalAffairs in a report that
examined not only agronomic crops but also various waste streams as potential cellulosic
feedstock for sustainable bioenergy production.
We conclude that although crop residues may often be excluded from cellulosic energy

crop discussions, they will undoubtedly be part of cellulosic bioenergy systems for many
years. The best option from our perspective is to integrate them into an overall feedstock
production and delivery system that will be economically, environmentally, and socially
acceptable for many years to come.
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