2,115 research outputs found
Experimental and computational characterization of a modified GEC cell for dusty plasma experiments
A self-consistent fluid model developed for simulations of micro- gravity
dusty plasma experiments has for the first time been used to model asymmetric
dusty plasma experiments in a modified GEC reference cell with gravity. The
numerical results are directly compared with experimental data and the
experimentally determined dependence of global discharge parameters on the
applied driving potential and neutral gas pressure is found to be well matched
by the model. The local profiles important for dust particle transport are
studied and compared with experimentally determined profiles. The radial forces
in the midplane are presented for the different discharge settings. The
differences between the results obtained in the modified GEC cell and the
results first reported for the original GEC reference cell are pointed out
Metabolic and hormonal studies of Type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation
Long-term normalization of glucose metabolism is necessary to prevent or ameliorate diabetic complications. Although pancreatic grafting is able to restore normal blood glucose and glycated haemoglobin, the degree of normalization of the deranged diabetic metabolism after pancreas transplantation is still questionable. Consequently glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide responses to oral glucose and i.v. arginine were measured in 36 Type 1 (insulin-dependent) diabetic recipients of pancreas and kidney allografts and compared to ten healthy control subjects. Despite normal HbA1 (7.2±0.2%; normal <8%) glucose disposal was normal only in 44% and impaired in 56% of the graft recipients. Normalization of glucose tolerance was achieved at the expense of hyperinsulinaemia in 52% of the subjects. C-peptide and glucagon were normal, while pancreatic polypeptide was significantly higher in the graft recipients. Intravenous glucose tolerance (n=21) was normal in 67% and borderline in 23%. Biphasic insulin release was seen in patients with normal glucose tolerance. Glucose tolerance did not deteriorate up to 7 years post-transplant. In addition, stress hormone release (cortisol, growth hormone, prolactin, glucagon, catecholamines) to insulin-induced hypoglycaemia was examined in 20 graft recipients and compared to eight healthy subjects. Reduced blood glucose decline indicates insulin resistance, but glucose recovery was normal, despite markedly reduced catecholamine and glucagon release. These data demonstrate the effectiveness of pancreatic grafting in normalizing glucose metabolism, although hyperinsulinaemia and deranged counterregulatory hormone response are observed frequently
The evolution of eyes and visually guided behaviour
The morphology and molecular mechanisms of animal photoreceptor cells and eyes reveal a complex pattern of duplications and co-option of genetic modules, leading to a number of different light-sensitive systems that share many components, in which clear-cut homologies are rare. On the basis of molecular and morphological findings, I discuss the functional requirements for vision and how these have constrained the evolution of eyes. The fact that natural selection on eyes acts through the consequences of visually guided behaviour leads to a concept of task-punctuated evolution, where sensory systems evolve by a sequential acquisition of sensory tasks. I identify four key innovations that, one after the other, paved the way for the evolution of efficient eyes. These innovations are (i) efficient photopigments, (ii) directionality through screening pigment, (iii) photoreceptor membrane folding, and (iv) focusing optics. A corresponding evolutionary sequence is suggested, starting at non-directional monitoring of ambient luminance and leading to comparisons of luminances within a scene, first by a scanning mode and later by parallel spatial channels in imaging eyes
Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419
Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome se-quence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a fea-ture unique to this medic microsymbiont
The State Equation of the Yang-Mills field Dark Energy Models
In this paper, we study the possibility of building Yang-Mills(YM) field dark
energy models with equation of state (EoS) crossing -1, and find that it can
not be realized by the single YM field models, no matter what kind of
lagrangian or initial condition. But the states of and
all can be naturally got in this kind of models. The former is like
a quintessence field, and the latter is like a phantom field. This makes that
one can build a model with two YM fields, in which one with the initial state
of , and the other with . We give an example model of
this kind, and find that its EoS is larger than -1 in the past and less than -1
at the present time. We also find that this change must be from to
, and it will go to the critical state of with the expansion
of the Universe, which character is same with the single YM field models, and
the Big Rip is naturally avoided.Comment: 20 pages, 4 figures. minor typos correcte
Footprints of Statistical Anisotropies
We propose and develop a formalism to describe and constrain statistically
anisotropic primordial perturbations. Starting from a decomposition of the
primordial power spectrum in spherical harmonics, we find how the temperature
fluctuations observed in the CMB sky are directly related to the coefficients
in this harmonic expansion. Although the angular power spectrum does not
discriminate between statistically isotropic and anisotropic perturbations, it
is possible to define analogous quadratic estimators that are direct measures
of statistical anisotropy. As a simple illustration of our formalism we test
for the existence of a preferred direction in the primordial perturbations
using full-sky CMB maps. We do not find significant evidence supporting the
existence of a dipole component in the primordial spectrum.Comment: 26 pages, 5 double figures. Uses RevTeX
Desperately seeking fixedness: practitioners accounts of 'becoming doctoral researchers
We draw upon the concept of liminality to explore the experiences of practitioners enrolled on a UK Doctor of Business Administration (DBA) programme. We analyse twenty practitioners’ reflective journals to detail how the DBA liminal space was negotiated. More specifically, we describe how practitioners deal with their struggles of identity incoherence or ‘monsters of doubt’ which are amplified in the DBA context owing to the complex nature of the separation phase of liminality. We identify three broad methods deployed in this endeavour: ‘scaffolding’; ‘putting the past to work’ and ‘bracketing’- which evidence practitioners ‘desperately seeking fixedness’. We make three contributions – first, we provide empirical insights into the experiences of the increasingly significant, but still under researched, DBA student. Second, we develop our understandings of monsters of doubt through illustrating how these are negotiated for learning to progress. Finally, we contribute to wider discussions of ‘becoming’ to demonstrate the simultaneous and paradoxical importance of movement and fixedness in order to learn and become
Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy
Bianchi type V viscous fluid cosmological model for barotropic fluid
distribution with varying cosmological term is investigated. We have
examined a cosmological scenario proposing a variation law for Hubble parameter
in the background of homogeneous, anisotropic Bianchi type V space-time.
The model isotropizes asymptotically and the presence of shear viscosity
accelerates the isotropization. The model describes a unified expansion history
of the universe indicating initial decelerating expansion and late time
accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure
Can we assess teaching quality on the basis of student outcomes? A stochastic frontier application
This paper proposes a new application of Stochastic Frontier Analysis (SFA) for estimating the student performance gap and how this can be used to assess changes of teaching quality at the individual unit-of-study level (module-level). Although there have been other examples in the literature that assess ‘efficiency’ in student outcomes, this is the first study that proposes the use of SFA specifically at the module level and with the goal of creating an aggregate measure of ‘quality’, thus avoiding the known issue of the statistical inconsistency of unit-specific SFA estimates. A case study is presented on how the approach can be applied in practice, with discussion on potential implementation issues. This paper is targeted to academics and policy makers that are interested in the quantitative assessment of student outcomes and specifically to those who want to assess how changes in module structure and/or delivery have affected said student outcomes
Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution
The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1̅10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close
- …