58 research outputs found

    Fe and N self-diffusion in amorphous FeN: A SIMS and neutron reflectivity study

    Full text link
    Simultaneous measurement of self-diffusion of iron and nitrogen in amorphous iron nitride (Fe86N14) using secondary ion mass spectroscopy (SIMS) technique has been done. In addition neutron reflectivity (NR) technique was employed to study the Fe diffusion in the same compound. The broadening of a tracer layer of 57Fe8615N14 sandwiched between Fe86N14 layers was observed after isothermal vacuum annealing of the films at different temperatures in SIMS measurements. And a decay of the Bragg peak intensity after isothermal annealing was observed in [Fe86N14/57Fe86N14]10 multilayers in NR. Strong structural relaxation of diffusion coefficient was observed below the crystallization temperature of the amorphous phase in both measurements. It was observed from the SIMS measurements that Fe diffusion was about 2 orders of magnitude smaller compared to nitrogen at a given temperature. The NR measurements reveal that the mechanism of Fe self-diffusion is very similar to that in metal-metal type metallic glasses. The structural relaxation time for Fe and N diffusion was found comparable indicating that the obtained relaxation time essentially pertain to the structural relaxation of the amorphous phase.Comment: 10 pages 12 figure

    Replication Pauses of the Wild-Type and Mutant Mitochondrial DNA Polymerase Gamma: A Simulation Study

    Get PDF
    The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo−) in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo− polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase

    Scaling from Single Molecule to Macroscopic Adhesion at Polymer/Metal Interfaces

    No full text

    Klebstoffentwicklung aus dem molekularen Baukasten - Phänomen der Adhäsion entschlüsselt

    No full text
    corecore