8 research outputs found

    Single-sector supersymmetry breaking in supersymmetric QCD

    No full text
    We construct examples of single-sector supersymmetry breaking based on simple deformations of supersymmetric QCD with (weakly) gauged flavor group. These theories are calculable in a weakly coupled Seiberg dual description. In these models, some of the particles in the first two generations of quarks and leptons are composites of the same strong dynamics which leads to dynamical supersymmetry breaking. Such models can explain the hierarchies of Yukawa couplings in the standard model, in a way that predictively correlates with the spectrum of supersymmetry-breaking soft terms

    Dynamical supersymmetry breaking, with flavor

    Get PDF
    We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of standard model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These “single-sector” supersymmetry-breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first- and second-generation sparticles have masses of order 20 TeV, while the stop mass is a few TeV. In other cases, all sparticles obtain masses of order a few TeV predominantly from gauge mediation, even though the first two generations are composite

    Dual purpose landscaping tools: Small extra dimensions in AdS/CFT

    No full text
    We propose a class of AdS/CFT dual pairs which have small internal dimensions on the gravity side. Starting from known Freund-Rubin AdS/CFT dual pairs, we use 7-branes to nearly cancel the curvature energy of the internal dimensions while maintaining their stabilization. This leads to a new corner of the landscape – a class of AdS solutions with a hierarchically large AdS radius – with a dual field theory given (implicitly) by the infrared limit of a concrete brane construction involving D3-branes, 7-branes, and curvature. We first construct a class of hierarchical AdS5/CFT4 dual pairs with a simple formula for the number of degrees of freedom which we interpret in the dual QFT. We then generalize thes
    corecore