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We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated

by quark and lepton compositeness, and where the composites emerge from the same sector that

dynamically breaks supersymmetry. The observed pattern of standard model fermion masses and mixings

is obtained by identifying the various generations with composites of different dimension in the

ultraviolet. These ‘‘single-sector’’ supersymmetry-breaking models give rise to various spectra of soft

masses which are, in many cases, quite distinct from what is commonly found in models of gauge or

gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the

first- and second-generation sparticles have masses of order 20 TeV, while the stop mass is a few TeV. In

other cases, all sparticles obtain masses of order a few TeV predominantly from gauge mediation, even

though the first two generations are composite.
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I. INTRODUCTION

Two central mysteries in fundamental physics involve
the discrepancy between GFermi and GNewton, and the origin
of the patterns in the quark and lepton Yukawa couplings.
Supersymmetry is a well-motivated candidate, which ad-
dresses the first question. It is then natural to ask, can we
find supersymmetric models of weak-scale physics where
both questions are answered simultaneously, and the dy-
namics that explains the weak scale also explains the
texture of the fermion mass matrix?

One promising idea that could explain the structure of
the Yukawa couplings is compositeness. If the first two
generations of quarks and leptons are composites at some
intermediate scale �, while flavor physics is generated at
Mflavor � �, then the masses and mixings of the first two
generations will be suppressed by the small parameter � �
�=Mflavor. The third generation should be elementary (ex-
ternal to the strong dynamics), because the top quark
Yukawa coupling is Oð1Þ and thus not suppressed. It was
proposed in [1,2] that perhaps the strongly coupled sector
that is responsible for dynamical supersymmetry breaking
could also generate the first two generations of quarks and
leptons as composites of the same strong dynamics. Such
‘‘single-sector’’ models could give a simultaneous expla-
nation of the Planck/weak hierarchy and the masses and
mixings of standard model particles.

While this is an attractive idea, there were no calculable
examples. Recently, using the fact that supersymmetric
QCD (SQCD) has simple metastable vacua that exhibit
dynamical supersymmetry breaking [3], calculable ex-
amples of such single-sector models were developed [4].
The simplest examples give rise to two composite gener-

ations, both arising from dimension two operators in the
high-energy theory. The natural texture of the matrix of
masses and mixings is then of the form

�2 �2 �
�2 �2 �
� � 1

0
B@

1
CA: (1.1)

In the models of [4], the first two generations of sparticles
are parametrically heavier than the third-generation
sparticles.
It is desirable, however, to find other classes of calcu-

lable single-sector models where the mass matrix can take
a more general form. For instance, if one of the generations
arises from a dimension three operator in the high-energy
theory, while the other arises from a dimension two opera-
tor, one would expect a mass matrix of the slightly more
appealing form

�4 �3 �2

�3 �2 �
�2 � 1

0
B@

1
CA: (1.2)

With additionalOð1Þ coefficients and �� 0:1, this Yukawa
matrix reproduces the observed flavor hierarchy.
Our goal in this paper is to explore the class of calculable

single-sector models that can be constructed given the
current state-of-the-art in models of dynamical supersym-
metry breaking. We will find that models with this flavor
structure—as well as models with additional parameters
that give more general classes of mass matrices—can
easily be constructed.
In the models of [1,2], as well as the newer calculable

models in [4], the composite generations not surprisingly
couple more strongly to the supersymmetry-breaking order
parameter than the elementary third generation (whose
leading sfermion mass arises from gauge mediation, after
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weakly gauging the standard model subgroup of the global
symmetry group of the supersymmetry-breaking theory).
Therefore, one is led to phenomenology very reminiscent
of the scenario advocated in [5,6], where the first- and
second-generation sfermion masses are larger than those
of the third generation. One of the surprises we shall find
here is that in some of our models even some of the
composites can have leading masses arising from gauge
mediation and comparable to the third-generation masses.

A. General strategy

Before we proceed to a detailed analysis, it is worth
explaining the general strategy. One of the most elegant
ideas for explaining the texture of Yukawas given by
Eq. (1.2), which matches observation reasonably well, is
to postulate that the first and second generations are se-
cretly composite above some scale �, and in the high-
energy theory their Yukawa couplings are then irrelevant
operators. With a first and second generation emerging
from operators whose dimensions in the ultraviolet (UV)
are 3 and 2 (and an elementary third generation), one
naturally gets the structure above, with the small parameter

� ¼ �=Mflavor (1.3)

emerging from the suppression of irrelevant operators in
the high-energy theory. For �� 10�1, this is an excellent
starting point for matching observations.

More concretely, consider an asymptotically free SQCD

theory with gauge groupG, fundamental quarks ðQ; ~QÞ and
a field U in a 2-index tensor representation of the gauge
group. We will call this the ‘‘electric theory,’’ and its
dynamical scale, below which it becomes strongly
coupled, will be denoted by �.

A promising approach to constructing calculable models
arises when the theory has an infrared dual description (the

‘‘magnetic theory’’) where the mesons ðQU ~QÞ and ðQ ~QÞ
are weakly coupled. These are the fields that will produce
the first and second generations. Generically, the IR theory
also contains magnetic quarks ðq; ~qÞ, and a field ~U in a
rank 2 tensor representation of the magnetic gauge group.

Furthermore, we imagine that there is some additional
UV physics at a scaleMflavor >�, responsible for generat-
ing the Yukawa couplings1

WYuk � 1

M4
flavor

ðQU ~QÞHðQU ~QÞ þ 1

M3
flavor

ðQ ~QÞHðQU ~QÞ

þ 1

M2
flavor

ðQ ~QÞHðQ ~QÞ þ 1

Mflavor

ðQ ~QÞH�3

þ�3H�3: (1.4)

Here, �3 denotes the elementary third generation.
Rescaling the fields by appropriate powers of � so that
they are canonically normalized gives a Yukawa matrix of
the form (1.2).

In general, the mesons ðQ ~QÞ and ðQU ~QÞ contain more
matter than just the first two standard model generations. It
will be shown that some of the extra components of these
fields together with the magnetic quarks yield a weakly
coupled supersymmetry-breaking model (as in [3]). In this
effective description, supersymmetry breaking occurs
through tree-level and one-loop interactions, while the
supersymmetry-breaking scale is generically an inverse
loop factor above the electroweak scale.
The organization of the paper is as follows: In Sec. II, we

present the simplest model, which naturally gives rise to
two composite generations with a Yukawa matrix of more
general type than (1.1). This model has two parameters in
the flavor sector instead of one, and so while it can model
observations quite well, it is perhaps less elegant than the
more predictive structure in (1.2). Therefore, in Sec. III, we
move on to a class of models which give rise to the
structure (1.2). A starring role is played by the metastable
supersymmetry-breaking vacua of SQCD with fundamen-
tal flavors and an additional adjoint chiral superfield. After
discussing the asymptotically free electric theory and its
infrared free magnetic dual, we find new metastable
supersymmetry-breaking vacua.
In Sec. IV, we show how this simple model in Sec. III

naturally explains the flavor hierarchy and present the
fermion and sparticle spectrum. We also discuss con-
straints on the sparticle spectra from flavor-changing neu-
tral currents (FCNCs). The simplest model is consistent
with the constraints from FCNCs only in a small region of
parameter space, and in Sec. V, we present more general
models that accommodate current bounds.
We present our conclusions in Sec. VI, where we also

briefly compare this method of explaining the Yukawa
flavor pattern to other common explanations in the litera-
ture. Two appendices are devoted to a more careful dis-
cussion of FCNCs (Appendix A) and a discussion of gauge
coupling unification and the existence of Landau poles
(Appendix B). Since all of the models we study will
typically have a lot of extra massive matter at very high
scales, gauge coupling unification can be challenging;
however, as explained Appendix C, one way to reduce
the number of extra supermassive fields significantly is to
abandon the requirement that the very massive extra matter
fill out complete SUð5Þ multiplets.

II. A SIMPLE MODEL

A. Basic scheme

Before constructing models of calculable dynamical
supersymmetry breaking that produce the pattern (1.2),
we first realize a more modest goal and construct models
in which the first and second generations are composites of

1The minimal supersymmetric standard model contains sepa-
rate Hu and Hd fields, but we will simplify schematic equations
of this sort by just denoting both Higgs fields by H throughout
the paper.
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different strongly coupled sectors. If the first two genera-
tions arise from, say, dimension two operators in the high-
energy theory and the third generation is elementary, the
resulting Yukawa texture would be

�2 �� �
�� �2 �
� � 1

0
B@

1
CA; (2.1)

with

� ¼ �1=Mflavor; � ¼ �2=Mflavor: (2.2)

While this is perhaps less elegant than obtaining the
pattern (1.2), we will see that it is quite simple to realize
in practice. One can therefore compare the relative com-
plexity of the model building required to realize the differ-
ent textures and decide which seems more appealing. In
fact, as we will see, the simplest class of models which
realizes the texture (2.1) can also, by variation of parame-
ters, realize the texture (1.2). So it is quite natural to
consider both patterns.

B. Example

The most obvious way to make a model with the pattern
(2.1) is to combine two of the calculable single-sector
models that produce a single composite generation which
is dimension two in the UV theory, discussed in Sec. 4.1 of
[4].

For instance, consider supersymmetric SUðNcÞ QCD

with Nc ¼ 11 and with Nf ¼ 12 flavors of quarks Q, ~Q,

and a common quark mass m � �. This theory has meta-
stable vacua which are evident in the weakly coupled
magnetic dual description [7], valid at energies � �.
The magnetic dual is an SUðNf � NcÞ gauge theory with

Nf flavors of magnetic quarks q, ~q, and a meson � which

transforms in the (Adjþ 1) of the SUð12Þ flavor group but
is a gauge singlet. The magnetic superpotential is

W ¼ h trð�~qqÞ � h�2 tr�; (2.3)

where the second term arises due to the mass deformation
of the electric theory. Here,

��
ffiffiffiffiffiffiffiffi
m�

p
; (2.4)

and we can set �magnetic ¼ � (where the magnetic theory

develops a Landau pole at �magnetic), so h� 1.

This theory breaks supersymmetry by the rank condition
[3]; the magnetic quarks develop a vacuum expectation
value (vev) which breaks the SUð12Þ flavor symmetry to
SUð11Þ, and F� � 0. We choose an embedding of the
standard model SUð5Þ into the SUð12Þ flavor group such
that

Q ¼ ð5þ �5þ 1Þ þ 1; ~Q ¼ ð�5þ 5þ 1Þ þ 1; (2.5)

where the decomposition in parentheses indicates the em-
bedding into SUð11Þ. The mesons of the magnetic theory
can then be decomposed according to

� ¼ Y1�1 ZT
1�11

~Z11�1 X11�11

� �
; (2.6)

with Y, Z, ~Z, and X transforming in the 1, 11, 11, and
(Adjþ 1) of SUð11Þ.
In terms of SUð5Þ quantum numbers, X decomposes as

X ¼ ð10þ �5Þ þ ½2� 24þ 15þ 15þ 10þ 2� 5þ �5

þ 3� 1�: (2.7)

We see that there is an entire standard model generation,
and additional matter which can be given a large mass (at
the scale �) as in [4], by adding appropriate ‘‘spectators’’
to the QCD dynamics and deforming the superpotential by
the mass term

W3 ¼ �
X
R

ððQ ~QÞRS �RÞ; (2.8)

where the sum is over the representations in brackets in
(2.7), except for the overall singlet trX which breaks su-
persymmetry. Here, S �R are spectators added in the appro-
priate conjugate representations. After recalling that the

relation between the magnetic meson and Q ~Q involves a
power of � to canonically normalize the meson, the un-
wanted matter obtains masses of order �� which can be a
very high scale. [We envision choosing � just below the
grand unified theory (GUT) scale, for instance.]
The composite generation arising from X is obviously of

dimension two in the high-energy theory, and therefore it
will have Yukawa couplings suppressed by the ratio of
scales�=Mflavor. The scalars in X are pseudomoduli which
receive a calculable mass from loops in the magnetic
theory, of order h2�=ð4�Þ. Gauge mediation, with ‘‘mes-
sengers’’ coming both from the composite generation and
some of the additional components of X and the magnetic
quarks, will transmit masses of order ðg2SM=16�2Þ� to the

other standard model generations [4].
It is now clear how to proceed to make a simple model

which gives rise to the pattern of Yukawa couplings in
(2.1), with two composite generations. Consider an
SUðNc;1Þ � SUðNc;2Þ gauge theory with Nf;1 flavors of

quarks in the first gauge factor and Nf;2 in the second. If

we choose Nc;i ¼ 11, Nf;i ¼ 12, and independent quark

masses mi for the two sets of quarks, we end up with two
copies of the previous model, with supersymmetry-

breaking scales �1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1;2�1;2

p
. Gauge invariance for-

bids any additional marginal or relevant couplings in the
electric theory, so in fact the most generic renormalizable
superpotential for the high-energy theory takes precisely
the form we wish, though the choice of parameters
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mi � �i is only technically natural and would need to be
retrofitted [8] in an acceptable construction. Adding now
an elementary pair of Higgs bosons and an elementary
third generation, we will find precisely the pattern of
Yukawas in (2.1), with � and � as in (2.2).

Problems from FCNCs in these type of models will be
discussed in Sec. V and Appendix A. With the first- and
second-generation sparticle masses�20 TeV, only a mod-
erate degeneracy among the two is required to avoid
FCNCs. The soft masses of the first two generations
come from the Coleman-Weinberg potential, generated
after integrating out heavy fields, and are given by
�1=4� and �2=4�. The �i should thus be chosen to lie
in the range �250 TeV to avoid prohibitive FCNCs.2

Gauge-mediated masses are dominated by the larger of
these two scales. There will be 8 additional messenger
pairs in the 5þ �5 of SUð5Þ, coming from the magnetic
quarks and mesons in the two SQCD sectors. Therefore,
these models will have a Landau pole below the GUT
scale.

In the discussion so far, we have not broken R symmetry.
We can incorporate R breaking by adding, for example, a
further superpotential deformation to the electric theory,

�Wel � ðQ ~QÞ2. This perturbation was studied in some de-
tail in [9]. The perturbation to the magnetic dual theory is

W4 ¼ 1
2h

2�� trð�2Þ: (2.9)

This perturbation both explicitly breaks R symmetry, and
leads to a larger spontaneous breaking, as the SUð11Þ
singlet in X develops a vev. After the addition of this
coupling, the composite generation no longer arises strictly
from X—instead, due to the mass terms from (2.8) and
(2.9), each generation is now an admixture of the 10þ �5
from X and one of the spectators. However, for �� � �,

each generation is dominated by the composite field X,
with the admixture from the spectator suppressed by the
small parameter��=�. To get interesting gaugino masses,

h2�� should be chosen near the TeV scale, and if� is near

MGUT, the admixture is negligibly small.

C. A landscape of simple models

We can derive the simple model in Sec. II B by starting
with a high-energy theory consisting of a single SUðNcÞ
gauge group with Nf quark flavors together with an adjoint

superfield U. The dynamics of this theory was studied in

detail, in the presence of an adjoint superpotential, in [10–
12]. Let us imagine that our theory has a superpotential

W ¼ gkþ1

kþ 1
TrðUkþ1Þ þ . . .þ g1 TrðUÞ ¼ TrðPkþ1ðUÞÞ;

(2.10)

where Pkþ1ðUÞ is a generic degree kþ 1 polynomial
Pkþ1 ¼

P
kþ1
j¼1

gj
j U

j, and g1 should be interpreted as a

Lagrange multiplier imposing the tracelessness constraint
on U.
The classical vacua of this theory can be found by setting

the eigenvalues of the Nc � Nc traceless matrix U equal to
various roots of the equation

P0ðxÞ ¼ Xk
j¼0

gjþ1x
j ¼ Yk

i¼1

ðx� aiÞ ¼ 0: (2.11)

Let us assume that P is sufficiently generic so that ai � aj
for i � j. In the vacuum where Ni of the eigenvalues of U
are equal to ai, and a total of p different ai appear as
eigenvalues of U, the gauge group is broken as

SUðNcÞ !
Yk
i¼1

SUðNiÞ �Uð1Þp�1; (2.12)

where
P

iNi ¼ Nc.
The classical low-energy physics is that of a product of

SQCD theories with Nf quark flavors, but it is clear that in

the quantum theory the physics depends in detail on the
precise values of the ai, since, e.g. ai � aj determines the

masses of charged off-diagonal components of the U field
which serve as bifundamentals connecting the different
gauge factors. As long as the k roots ai in (2.11) are
distinct, the adjoint superfield gives rise to no massless
excitations in any of these vacua. Not all such partitions
give rise to a theory with supersymmetric quantum vacua.
For instance, if any of the SUðNiÞ factors has Ni > Nf, it

suffers from a runaway to infinity in field space.
Now, deforming the high-energy theory by a small quark

mass m for the Nf quark flavors (small compared to the

effective adjoint mass in each vacuum), we obtain a land-
scape of vacua with different SUðNiÞ gauge factors, each
with Nf quarks. The different SQCD sectors have different

scales �i, determined by matching scales at the value of
the adjoint mass. In particular, the scale of the ith theory is
determined in terms of the scale � of the original electric
theory by

�
3Ni�Nf

i ¼ �2Nc�NfgNi

kþ1

Y
j�i

ðai � ajÞNi�2Nj : (2.13)

This implies that the supersymmetry-breaking scale of
each SUðNiÞ theory is determined in terms of the scale of
the parent SUðNcÞ gauge theory, the quark massm, and the
pattern of symmetry breaking encoded in (2.11). We can

2This introduces a new coincidence problem: why are the
masses generated by two unrelated sectors of strong dynamics
relatively close to one another? We require �1 and �2 to be
within roughly 20% of one another to avoid problems with
FCNCs; the relevant constraints on similar models will be
discussed in great detail in Sec. V and appendix A. We note
that obtaining the two sectors from a single theory at higher
energies, along the lines indicated in the next section, could
ameliorate this coincidence problem.
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then anticipate generating a variety of vacua starting from
one high-energy gauge theory, giving rise to a discretuum
of possible values of the parameters �, � in Sec. II A.

Interestingly, in Sec. III, we will also obtain models with
the texture (1.2) from this class of gauge theories with k ¼
2. So it is possible that one high-energy theory could give
rise, in different vacua, to single-sector models that each
have a realistic phenomenology, with different explana-
tions for the physics of flavor!

III. SQCD WITH AN ADJOINT

The previous section explored a class of models giving a
Yukawa matrix (2.1) based on two parameters � and �. The
rest of the paper is devoted to constructing calculable
models with a ‘‘dimensional hierarchy,’’ where the first
and second generations arise from composite fields of
dimension three and two, respectively, while the third
generation (denoted by �3) and the Higgs are elementary.
Such models naturally give rise to the desired Yukawa
texture (1.2) involving a single parameter �.

We now focus on the theory which appeared in Sec. II C:
the electric gauge theory will be SUðNcÞ SQCD, with Nf

quarks ðQi; ~QjÞ, and a field U in the adjoint of the gauge

group. While the analysis of Sec. II C was concerned with
large adjoint masses (such that the adjoint could be inte-
grated out in the low-energy theory), we will now be
interested in the case where the adjoint mass is small and
its dynamics remains important at low energies. This the-
ory has been studied in detail in [10–12], and we start by
reviewing their conclusions.3

A. The electric theory

We begin by specializing to the case where the adjoint
has a general renormalizable superpotential

Wel ¼ gU
3

TrU3 þmU

2
TrU2 þ �TrU: (3.1)

This superpotential does not have any metastable
supersymmetry-breaking vacua, which requires additional
perturbations discussed below in Sec. III C. Here, ‘‘Tr’’
means a trace over the gauge indices, while ‘‘tr’’ will be
used to indicate traces over flavor indices. � is a Lagrange
multiplier field, imposing TrU ¼ 0. We denote the strong
coupling scale by �. Calculability in the magnetic dual
theory discussed below requires mU � �. Higher dimen-
sional operators TrUkþ1 with k 	 3 are dangerously irrele-
vant and may influence IR physics if present [12]. For now
we focus on theories with k ¼ 2, but we will have some
discussion of theories with k 	 3 in Sec. VC.

The matter content with its gauge and anomaly free
global symmetry quantum numbers is (for mU ¼ 0),

SUðNcÞ SUðNfÞL SUðNfÞR Uð1ÞV Uð1ÞR
Q h h 1 1 1� 2

3
Nc

Nf

~Q �h 1 �h �1 1� 2
3
Nc

Nf

U Adj 1 1 0 2
3

A nonzero mass mU breaks the R symmetry. It will be
useful to think of mU as a background superfield with R
charge 2=3.
The superpotential has two critical points, a1, a2. The

different classical vacua correspond to placing r1 eigen-
values of U equal to a1, and r2 ¼ Nc � r1 eigenvalues
equal to a2. The gauge group is broken to

SUðNcÞ ! SUðr1Þ � SUðr2Þ �Uð1Þ: (3.2)

Imposing the tracelessness condition r1a1 þ r2a2 ¼ 0, the
critical points are4

a1 ¼ r2
r1 � r2

mU

gU
; a2 ¼ � r1

r1 � r2

mU

gU
: (3.3)

The low-energy theory splits into two decoupled SQCD
sectors with only fundamental matter (as long as mU � 0).
Quantum-mechanically, the vacua are stable if all ri 
 Nf;

therefore, a necessary condition for the theory to have a
stable vacuum is Nf 	 Nc=2. Nf will also be restricted to

Nf <
2
3Nc so that the magnetic theory is IR free.

Summarizing, we will work in the range

Nc

2
<Nf <

2

3
Nc: (3.4)

(The case Nf ¼ Nc=2 is excluded because there are no

magnetic quarks.)
An important role will be played by the two mesons

ðM1Þij ¼ ~QiQj; ðM2Þij ¼ ~QiUQj; (3.5)

where the gauge indices are contracted and suppressed.
The moduli space is parametrized by these mesons and
baryons (we refer the reader to [12] for their definition,
which will not be needed here), modulo classical relations.
Notice that in [12], the dimension three meson was defined
as

MKSS
2 ¼ ~Q

�
Uþ mU

2gU

�
Q: (3.6)

The redefinition U ! Us ¼ Uþ mU

2gU
amounts to setting

mU ¼ 0 and simplifies considerably the electric-magnetic
duality discussion. However, we will work with the defi-
nition (3.5), where M2 has classical scaling dimension
three, instead of being a linear combination of dimension
two and dimension three fields. This simplifies the struc-

3See, e.g. [13] for a rather different construction of metastable
vacua in SQCD with an adjoint.

4Vacua with r1 ¼ r2 can only exist for mU ¼ 0. This case will
not arise in our discussions.
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ture of the Yukawa couplings (2.1) when we later embed
the first standard model generation inside M2.

B. The magnetic dual

The magnetic dual theory consists of SQCD, with gauge

group SUð ~Nc ¼ 2Nf � NcÞ and strong coupling scale ~�,

Nf quarks ðq; ~qÞ, one magnetic adjoint field ~U, and two

gauge singlet fields corresponding to the mesons (3.5). The
theory has a superpotential5

Wmag ¼ �gU
3

Tr ~U3 þ Nc

2 ~Nc

mU Tr ~U2 þ ~�Tr ~U

þ gU

�̂2

� ~Nc � Nc

2 ~Nc

mU

gU
trðM1q~qÞ þ trðM1q ~U ~qÞ

þ trðM2q~qÞ
�
: (3.7)

The Lagrange multiplier ~� is introduced to impose Tr ~U ¼
0. The superpotential receives nonperturbative corrections
[12] that can be neglected near the origin of field space,
where our metastable vacuum will be located.

The energy scale �̂ appears because M1 and M2 are
elementary, but have scaling dimensions two and three,
respectively. This dimensionful quantity is related to the

electric (�) and magnetic (~�) dynamical scales by

�2Nc�Nf ~�2 ~Nc�Nf ¼
�
�̂

gU

�
2Nf

: (3.8)

For mU ¼ 0, the gauge and global (nonanomalous) sym-
metry transformations are

SUð ~NcÞ SUðNfÞL SUðNfÞR Uð1ÞV Uð1ÞR
q h �h 1 Nc

~Nc
1� 2

3
Nc

Nf

~q �h 1 h � Nc
~Nc

1� 2
3

~Nc

Nf

~U Adj 1 1 0 2
3

M1 1 h �h 0 2� 4
3
Nc

Nf

M2 1 h �h 0 8
3 � 4

3
Nc

Nf

Notice the different R charge of M1 and M2 (which can be
read off directly in the electric theory). A nonzero massmU

breaks the R symmetry.
In the range (3.4), the magnetic theory is IR free and the

Kähler potential can be expanded

K ¼ 1

�1j�j2 trðMy
1M1Þ þ 1

�2j�j4 trðMy
2M2Þ

þ 1

�3

trðqyqþ ~q~qyÞ þ 1

�4

Trð ~Uy ~UÞ þ . . . ; (3.9)

where �i are order one positive numbers and ‘‘. . .’’ include
interaction terms. The canonically normalized mesons are

� :¼ M1ffiffiffiffiffiffi
�1

p
�

¼
~QQffiffiffiffiffiffi
�1

p
�
; �U :¼ M2ffiffiffiffiffiffi

�2
p

�2
¼

~QUQffiffiffiffiffiffi
�2

p
�2

:

(3.10)

Similarly, replacing q ! ffiffiffiffiffiffi
�3

p
q, ~q ! ffiffiffiffiffiffi

�3
p

~q and ~U !ffiffiffiffiffiffi
�4

p ~U gives canonical kinetic terms to the adjoint and

magnetic quarks. Henceforth, only canonically normalized
fields will be used.
The superpotential then becomes

Wmag ¼ ~gU
3

Tr ~U3 þ ~mU

2
Tr ~U2 þ ~�0 Tr ~Uþ h

�

�½c1 ~mU trð�q~qÞ þ c2 trð�q ~U ~qÞ� þ h trð�Uq~qÞ:
(3.11)

The parameters introduced here are related to the previous
ones by

~gU :¼ �ð�4Þ3=2gU; ~mU :¼ �4Nc

~Nc

mU;

h :¼ ffiffiffiffiffiffi
�2

p
�3

gU�
2

�̂2
c1 :¼

�
�1�4

�2

�
1=2 Nc � Nf

~gUNc

;

c2 :¼
�
�1�4

�2

�
1=2

; ~�0 :¼ ffiffiffiffiffiffi
�4

p ~�: (3.12)

Also, ~mU � � is required for calculability in the magnetic
theory (although in the opposite limit, ~mU � �, the ad-
joint may be integrated out of the electric theory to produce
the models of Sec. II C).
We end this analysis by pointing out the following

interesting consequence of the duality. All the interactions
between the meson � and the rest of the fields of the
magnetic theory are suppressed by 1=�. At energies E �
�,� approximately decouples from the rest of the system.
In particular, while the trilinear coupling between �U and
the magnetic quarks is order h, the corresponding interac-
tion for � is only order h ~mU=�. This difference can be
understood as follows: When ~mU ¼ 0 theUð1ÞR symmetry
presented before forbids a coupling �q~q. Turning on a
nonzero mass and treating it as a spurion superfield, the
only trilinear coupling allowed by R symmetry is
ð ~mU=�Þ�q~q.

C. Metastable supersymmetry breaking

The low-energy theory (3.11) contains a massive adjoint
~U, magnetic quarks ðq; ~qÞ interacting with a meson �U,
and an extra meson � whose interactions with the other
fields are suppressed by 1=�. The ð�U; q; ~qÞ sector is very

5We are dropping a constant term which depends only on gU.
This becomes important when trying to match the gauge invar-
iants TrUn ! Tr ~Um. Also, (3.7) differs slightly from the ex-
pression in [12]; this is due to the meson definitions (3.5) and
(3.6).
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similar to the magnetic theory studied by Intriligator,
Seiberg, and Shih (ISS) in [3], although the corresponding
electric theories are quite different. For instance, �U is of
dimension three in the UV, while the ISS meson has scaling
dimension two.

We focus on vacua with hTr ~U2i ¼ 0, corresponding to
r1 ¼ Nf, r2 ¼ Nc � Nf in (3.3). For this choice of parame-

ters the magnetic gauge group is unbroken. In general, it
will also be convenient to set ~Nc ¼ 1, to reduce the amount
of additional matter (see Sec. IV). Then the magnetic
gauge group is trivial, there is no magnetic adjoint, and
the magnetic superpotential simplifies to

Wmag ¼ c1h
~mU

�
trð�q~qÞ þ h trð�Uq~qÞ: (3.13)

Importantly for the low-energy physics, in this case there is
an additional R symmetry under which the mesons have
charge 2, while the magnetic quarks have charge 0. This
symmetry, which is anomalous, will be denoted by Uð1Þ0R.
Once the standard model gauge group is embedded in the
symmetry group of the theory, we will need to breakUð1Þ0R
in order to generate large enough gaugino masses.

In the low-energy theory, ~mU=� appears as a free pa-
rameter which determines how strongly the meson �
couples to the magnetic quarks. For pedagogical purposes,
we first restrict ourselves to the limit ~mU � �, which
simplifies the analysis considerably. While this limit can
lead, for a careful choice of parameters, to a phenomeno-
logically viable model that is not in conflict with current
limits from FCNCs (see Sec. VA), larger values of ~mU

(Sec. VB) or additional superpotential interactions
(Sec. VC) are desirable.

In this weakly coupled description, a supersymmetry-
breaking vacuum is generated once a term tr�U is added to
the superpotential.6 Following [9,14], the Uð1Þ0R symmetry
will be broken by adding a small explicit breaking term
proportional to tr�2

U. Furthermore, in order to avoid an
exactly massless superfield, a mass term tr�2 is needed.

Summarizing, the superpotential including the minimal
set of deformations required to construct a realistic model
of supersymmetry breaking is

Wmag ¼ c1h
~mU

�
trð�q~qÞ þ 1

2
m� tr�2

þ
�
�h�2 tr�U þ h trð�Uq~qÞ þ 1

2
h2�� trð�2

UÞ
�
:

(3.14)

To facilitate the interpretation of the model, the fields and
interactions that will be responsible of breaking supersym-
metry have been collected inside square brackets. The
deformation parameters m�, � and �� should be para-

metrically smaller than the dynamical scale � so that
microscopic corrections to the Kähler potential can be
neglected.
Equation (3.14) is the full superpotential when ~Nc ¼ 1.

For ~Nc > 1, it is straightforward to add the adjoint and
interactions described in (3.11); in this case, the formulas
below are still valid in the vacuum hTr ~U2i ¼ 0.
Foreseeing the use of this theory as a single-sector

model of supersymmetry breaking, we point out that cer-
tain off-diagonal components of �U and � will be identi-
fied with the first and second standard model generations.
Of course, such components cannot have large vectorlike
supersymmetric masses via superpotential terms (3.14) that
couple them to conjugate fields. The standard model com-
posite generations will be made massless by introducing
heavy spectator fields coupled to the unwanted conjugate
fields. However, for now we will analyze the theory with
superpotential (3.14) and no extra fields.
In the electric theory, the deformations added to (3.13) to

arrive at (3.14) correspond to perturbing (3.1) by

�Wel � �Q trðQU ~QÞ þ �1

�0

trðQ ~QÞ2 þ �2

�3
0

trðQU ~QÞ2;
(3.15)

where �0 is some UV scale satisfying �0 � �. In par-

ticular, the Yukawa interaction �Q trðQU ~QÞ in (3.15) gives
rise to the supersymmetry-breaking source term
�h�2 trð�UÞ appearing in (3.14). Thus, � is related to
the parameters of the electric theory by

h�2 :¼ �Q

ffiffiffiffiffiffi
�2

p
�2; � :¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�Q

�3gU

s
�̂: (3.16)

The parametric separation of scales � � � required for
calculability and metastability in the magnetic theory
arises from the smallness of the dimensionless coupling
�Q, as contrasted with the dimensionful quark mass m of

[3]. Indeed, all the deformations introduced in (3.15) arise
from marginal and irrelevant interactions in the electric
theory. More general perturbations will be discussed
momentarily.
Since �� comes from an irrelevant operator in the

electric theory, we naturally have �� � �. The analysis

then proceeds as in [9]. In the limit �� ! 0 supersymme-

try is broken at tree level by the rank condition, and �U is
stabilized at the origin due to one-loop effects. For finite
�� � �, the Uð1Þ0R is explicitly broken and supersym-

metric vacua appear at a distance �2=�� from the origin.

At tree-level, there are no supersymmetry-breaking vacua.
However, supersymmetry can be broken in a long-lived
metastable vacuum that lies close to the origin when one-
loop quantum corrections are included (see below) [15,16].
The tunneling from the metastable vacuum to the super-
symmetric vacua is highly suppressed for �� � �. Of

course, there are also supersymmetric vacua at large values

6We break supersymmetry predominantly with �U because
the interactions of� with the magnetic quarks are suppressed by
~mU=� � 1. Other deformations are explored below.
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of �U, whose existence crucially relies on (calculable)
nonperturbative effects [17], but as in [3,13] the longevity
of the metastable vacuum here is guaranteed by the hier-
archy �=� � 1. Finally, the theory possesses a large
number of additional vacua labeled by the possible parti-
tions (3.2) of the gauge group; stability of the vacuum with
hTr ~U2i ¼ 0 against potential transitions into such vacua
may be guaranteed provided � � ~mU, which is readily
accommodated.

Let us now analyze the pattern of supersymmetry break-
ing in more detail. We parameterize the fields as

�U ¼
YU; ~Nc� ~Nc

ZT
U; ~Nc�ðNf� ~NcÞ

~ZU;ðNf� ~NcÞ� ~Nc
XU;ðNf� ~NcÞ�ðNf� ~NcÞ

0
@

1
A;

� ¼
Y ~Nc� ~Nc

ZT
~Nc�ðNf� ~NcÞ

~ZðNf� ~NcÞ� ~Nc
XðNf� ~NcÞ�ðNf� ~NcÞ

0
@

1
A;

(3.17)

qT ¼ � ~Nc� ~Nc

	ðNf� ~NcÞ� ~Nc

 !
; ~q ¼ ~� ~Nc� ~Nc

~	ðNf� ~NcÞ� ~Nc

 !
: (3.18)

We will not present the spectrum of this model in detail,7

but only focus on the fields 	, ~	, ZU, ~ZU, Z, and ~Z.
Integrating out these fields generates the (bosonic)
Coleman-Weinberg potential, which in general is given
by [18]

VCW ¼ 1

64�2
S TrM4 log

M2

�2
cut

; (3.19)

where M is the mass matrix of the fields being integrated
out and �cut is some high-energy cutoff. The superpoten-
tial for the fields that generate the Coleman-Weinberg
potential that will lift the tree-level runaway directionXU is

W � h 	 ZU Z
� � XU � c1 ~mU

� �
~� h�� 0

c1 ~mU

�
~� 0 m�

0
B@

1
CA ~	

~ZU
~Z

0
@

1
A;

(3.20)

where �~� is given by (3.26). Since we take ~mU=� � 1,
the Z, ~Z fields completely decouple from the 	, ~	, ZU, ~ZU

sector. Moreover, the supersymmetry breaking field XU

couples in this limit only to the 	, ~	, ZU, ~ZU sector, and
we can focus on the fermion mass matrix

Mf ¼ h
XU �
~� h��

� �
: (3.21)

The bosonic components of 	, ~	, ZU, ~ZU will have masses
given by

Mb ¼
My

fMf �h�F�
XU

�hFXU
MfM

y
f

0
@

1
A; with

�F�
XU

¼ h
��2 þ h��XU 0

0 0

 !
:

(3.22)

The analysis proceeds now exactly as in [9], and we may
borrow the results from there. Near the origin of field
space, the Coleman-Weinberg potential from integrating
out 	, ~	, ZU, and ~ZU is

VCW ¼ m2
CWjXUj2 þ . . . (3.23)

where ‘‘. . .’’ refers to higher order interactions and mixings
with X that can be neglected. The ‘‘Coleman-Weinberg
mass’’ is

m2
CW ¼ bjh2�j2; b ¼ log4� 1

8�2
~Nc: (3.24)

Combining (3.23) with the tree-level potential computed
from (3.14),

Vtree ¼ ðNf � ~NcÞj � h�2 þ h2��XUj2; (3.25)

we find

hhXUi �
�2��

�

bj�j2 þ j��j2
� ��

�

b
; h�~�i � �2 (3.26)

and

jWXU
j � jh�2j: (3.27)

Importantly for the low-energy phenomenology, the vev of
XU is larger than ��

� by the inverse loop factor 1=b�
16�2. Hence, the spontaneous breaking of the R symmetry
is parametrically larger than the explicit one, and gaugino
masses can be sufficiently large. Corrections suppressed by
1=� have been neglected.
The field � is stabilized supersymmetrically,

W� ¼ 0; hXi ¼ 0; hYi � �c1
~mU

�

h�2

m�

; (3.28)

where we have neglected corrections of
Oð���

2 ~m3
U=ðm2

��
3ÞÞ. From the F term for the magnetic

quarks, we find

hYUi ¼ �c1
~mU

�
hYi: (3.29)

The rest of the fields are stabilized at the origin. The
hierarchy �� � � � � ensures that the vacuum is para-

metrically long lived against transitions into the various
supersymmetric vacua [9]. The theory receives micro-
scopic corrections controlled by ~mU=� and �=�, which
are parametrically suppressed compared to the IR effects
we have discussed. At this order, it is consistent to set
hYi ¼ hYUi ¼ 0. Moreover, (3.14) implies that there are
one-loop contributions mixing X and XU,

7We refer the reader to [9].
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V1-loop �m2
CW Re

�
~mU

�
X�XU

�
: (3.30)

This is negligible in the limit ~mU � �. Finally, we note
that the unbroken global symmetry is

SUðNf � ~NcÞ �Uð1Þ: (3.31)

In Sec. IV, wewill weakly gauge and identify a subgroup of
SUðNf � ~NcÞ with the standard model gauge group. This

will mean that part of the XU,X, ZU, ~ZU, 	, ~	, Z, and ~Zwill
have standard model gauge charges. In particular, we will
identify part of XU and X with the first and second-
generation standard model fermions.

D. More general superpotential perturbations

Let us summarize what we have done so far:
(1) We have constructed a metastable vacuum based on

the (almost decoupled) sector ð�U; q; ~qÞ, by having
superpotential terms that are linear and quadratic in
�U; see (3.14).

(2) The extra meson � has been lifted by adding an
appropriate mass term, which is naturally large in
the magnetic theory once Uð1Þ0R is broken. This
sector is decoupled from the supersymmetry-
breaking sector at leading order in ~mU=�. Later
on, one chiral generation from this sector will be
recoupled.

(3) In the metastable vacuum, the magnetic gauge group
is completely Higgsed at the scale h�~�i ¼ �2. The
magnetic adjoint ~U is massive and its interactions
with the rest of the fields are suppressed by 1=� and
1=�. Or, in the case of ~Nc ¼ 1, the magnetic theory
has no adjoint to begin with, as explained around
(3.14).

In the high-energy electric gauge theory, we have al-
lowed only specific marginal and irrelevant operators
(3.15). The aim of this subsection is to discuss what hap-
pens when more general deformations are allowed.

Adding a U4 piece changes the chiral ring and introdu-
ces extra degrees of freedom in the low-energy theory. The
resulting low-energy phenomenology will be analyzed in
Sec. VC. On the other hand, adding Un factors (with n 

3) to any superpotential term containing the mesons ðQ ~QÞ
and/or ðQU ~QÞ, modifies negligibly the low-energy theory.
This is because we are considering a vacuum where the
magnetic adjoint does not have a vev, and it has suppressed
couplings to the supersymmetry-breaking sector.

We are thus left with the possibility of adding irrelevant
operators up to dimension six, formed from the two me-
sons. One possibly dangerous term, which may give large
FCNCs, arises from the dimension five operator

ð ~QQÞð ~QUQÞ—this results in a mixing between � and
�U in the low-energy magnetic theory. The full magnetic
superpotential arising from marginal and irrelevant defor-

mations of the electric superpotential, up to dimension six,
is of the form

Wmag ¼ �h�2 tr�U þ 1

2
m� tr�2 þ�m tr��U þ � tr�3

þ 1

2
h2�� tr�2

U þ c1h
~mU

�
trð�q~qÞ þ h trð�Uq~qÞ:

(3.32)

The cubic term does not alter our analysis of the metastable
vacuum near the origin of field space. Furthermore, as long
as ð�mÞ2 & m���, the results of the previous subsection

are approximately correct.
However, for ð�mÞ2 >m���, the computation of the

metastable vacuum receives important corrections. In this
range there is still a metastable vacuum, but now both �U

and � play a role in the supersymmetry-breaking dynam-
ics, and their scalar components (part of which will be-
come the first and second-generation sfermions) receive
direct supersymmetry-breaking masses from the Coleman-
Weinberg potential. This alternative will be explored, and
exploited, in Sec. VB.

IV. SINGLE-SECTOR SUPERSYMMETRY
BREAKING

The model of Sec. III with magnetic superpotential
(3.14) will now be used to construct a ‘‘single-sector’’
supersymmetry-breaking model in which some standard
model generations are composite mesons of the strongly
coupled electric theory. In Sec. IVA, we discuss a simple
embedding of the first and second-generation standard
model fermions into the mesons of the supersymmetry-
breaking sector. We show how this generates the desired
fermion Yukawa matrix, (1.2), and thus naturally produces
the observed flavor hierarchy. In Sec. IVB, we estimate the
parametric contributions to various sparticle masses. While
the gaugino masses are generated from gauge mediation
only, the sfermions may obtain a mass from gauge media-
tion or directly from the supersymmetry-breaking sector
(in particular, from the one-loop Coleman-Weinberg
potential).
Constraints on the sfermion masses from FCNCs are

discussed in Sec. IVC. Although the sfermion masses are
diagonal in the flavor basis in which the fermion Yukawa
matrices take on the texture of (1.2), large off-diagonal
sfermion mass terms may be generated after diagonalizing
the fermion Yukawas. This can lead to large FCNCs unless
the sfermion masses of first two generations are roughly
the same (universal) or are both very heavy (decoupled).
Successful model building then amounts to finding various
limits of the adjoint model that give rise to soft terms
compatible with FCNC and other constraints. We will
reserve a discussion of specific parametric limits and via-
ble soft spectra for Sec. V.
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A. Minimal supersymmetric standard model
generations from composites

A simple single-sector supersymmetry-breaking model
can be constructed by embedding the first standard model
generation inside the meson�U and the second generation
inside the meson� (the embeddings are described in detail
below). The third generation will come from an additional
elementary field, which we denote by�3. The fields� and
�U were defined in (3.10) but are reproduced here sche-
matically for convenience:

�U �
~QUQ

�2
; ��

~QQ

�
: (4.1)

While both �U and � are dimension one fields at low
energies in the magnetic theory, they are dimension three
and two fields, respectively, in the UV electric theory.

The fermion Yukawa couplings will be generated at a
‘‘flavor scale’’ Mflavor, where the electric theory is weakly
coupled, through couplings between the standard model

fields contained inside ~QUQ, ~QQ, and �3 and an elemen-
tary Higgs field, H,

WYuk � 1

M4
flavor

ðQU ~QÞHðQU ~QÞ þ 1

M3
flavor

ðQ ~QÞHðQU ~QÞ

þ 1

M2
flavor

ðQ ~QÞHðQ ~QÞ þ 1

Mflavor

ðQ ~QÞH�3

þ 1

M2
flavor

ðQ ~UQÞH�3 þ�3H�3: (4.2)

We have neglected Oð1Þ dimensionless couplings. Since
~QUQ, ~QQ and �3 are dimension three, two, and, one,
respectively, the generated Yukawa couplings are sup-
pressed by different powers of the flavor scale Mflavor.

At low energies, this Yukawa superpotential becomes

WYuk � �4

M4
flavor

�UH�U þ �3

M3
flavor

�H�U

þ �2

M2
flavor

�H�þ �

Mflavor

�H�3

þ �2

M2
flavor

�UH�3 þ�3H�3: (4.3)

Setting � ¼ �=Mflavor gives the following fermion Yukawa
matrix (up to Oð1Þ dimensionless couplings)

�4 �3 �2

�3 �2 �
�2 � 1

0
B@

1
CA; (4.4)

which will generate the desired flavor hierarchy for ��
10�1. Note that it requires �� 10�1Mflavor, so that the

strong coupling scale of the electric theory cannot be too
much below the ‘‘flavor’’ scale.
We now describe the embedding of the standard model

fields inside the supersymmetry-breaking mesons in more
detail. To present our results in a compact way, an SUð5Þ
GUT notation will be adopted, but the standard model
gauge group SUð3ÞC � SUð2ÞL �Uð1ÞY can be easily
used instead. The latter embedding will be explored in
Appendix C and has the advantage that it generates less
additional heavy standard model charged matter that
change the renormalization group (RG) running of the
standard model gauge couplings—in particular, Landau
poles (which we discuss in Appendix B) can be pushed
to much higher energy scales.
The minimal choice for the number of flavors and colors

of the electric theory corresponds to

Nf ¼ 12; ~Nc ¼ 1 ) Nc ¼ 23:

The SUðNf ¼ 12Þ global symmetry is broken to SUðNf �
~Nc ¼ 11Þ by the vacuum expectation value �~� ¼ �2 [see
(3.26)]. The standard model GUT group is a weakly
gauged SUð5Þ subgroup of SUð11Þ, with the following
embedding of SUð5Þ into SUð12Þ:

Q� ð5þ �5þ 1Þ þ 1; ~Q� ð�5þ 5þ 1Þ þ 1; (4.5)

where the representations in round brackets denote the
embedding into SUð11Þ.
The mesons of the magnetic theory decompose as [see

(3.17)]

�U ¼ YU;1�1 ZT
U;1�11

~ZU;11�1 XU;11�11

 !
; �¼ Y1�1 ZT

1�11

~Z11�1 X11�11

 !
:

(4.6)

The fields ðYi; �; ~�Þ fields are all singlets under the stan-
dard model gauge group, while XU and X decompose as

ð10þ �5Þþ ½2� 24þ 15þ 15þ 10þ 2� 5þ �5þ 3� 1�;
(4.7)

where the representations in round brackets will form the
desired standard model fermions, and the matter in square
brackets represents additional matter that we will want to
remove.
The unwanted matter can be removed by the addition of

spectator fields S �R for each representation R in square
brackets (except the singlet piece TrðXUÞ, which partici-
pates in supersymmetry breaking) and with superpotential
couplings
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Wel � �1R

X
�R

S1 �RðQ ~QÞR þ �2R

1

�0

X
�R

S2 �RðQU ~QÞR

! Wmag � �1R�
X
�R

S1 �RXR þ �2R

�2

�0

X
�R

S2 �RXU;R:

(4.8)

The unwanted matter will now have masses of order� and
�2=�0, where �0 is some UV scale above �.

We also include spectators that pair up with Z and ~Z,
which are also charged under the standard model gauge
group. It is worth briefly explaining why we can include
spectators to remove the unwanted Z, ~Z particles in this
model, but not, e.g. in the models of [4]. In ISS-like
models, the Z and ~Z are in the same multiplet as the
magnetic meson that breaks supersymmetry by the rank
condition, and they receive a tree-level supersymmetry-
breaking mass. This is because they mix with the 	 com-
ponents of the magnetic quarks, which obtain a mass from
the ~q�q coupling in the magnetic superpotential.
Therefore, they play an important role in the calculation
of the one-loop Coleman-Weinberg potential, and altering
the spectrum of Z, ~Z mesons, even if it could be done
without creating instabilities, would drastically affect the
model. In this model, in contrast, there are two magnetic
mesons, and only�U is playing a role in the supersymme-
try breaking, while� is almost a spectator to the dynamics.
Therefore, the Z, ~Z mesons play no role in the Coleman-
Weinberg computations, and can be safely given a large
mass of order �2=�0 from the coupling (3.15), or an even
larger mass of order �� by adding appropriate spectators.

Once the chiral deformation (4.8) is turned on, the (10þ
�5) standard model fermions from X and XU [see (4.6)]
acquire masses only from the superpotential coupling
(4.2). More precisely, due to the �� perturbation the chiral

fermions have a very small admixture with the spectators.
This mixing is of order ð���0=�

2Þ � 10�14 in the range

of interest �� � TeV, ��MGUT, �0 �MPl, and can be

safely ignored.

B. Sparticle spectrum

Having identified superfields of the standard model with
various components of the mesons� and�U, we may now
make parametric estimates for the soft masses obtained
by gauginos, sfermions, and the gravitino in the
supersymmetry-breaking vacuum.

There are three possible contributions to the sfermion
masses. One contribution can come from a direct coupling
to supersymmetry breaking. This is the case for the com-
posite first-generation sfermions in XU that obtain a (large)
mass from the Coleman-Weinberg potential,

VCW �m2
CWjXUj2; mCW � ffiffiffi

b
p

h2�: (4.9)

The composite second-generation sfermions arising from
X have couplings to the supersymmetry-breaking sector

that are suppressed by the ratio ~mU=�. For ~mU=� � 1, the
second-generation sfermions obtain only a negligibly
small mass from the Coleman-Weinberg potential, even
though they are composites! The gauginos and third gen-
eration do not have tree-level couplings to the
supersymmetry-breaking fields.
The second contribution to the sfermion masses comes

from gauge mediation.8 After weakly gauging, for ex-
ample, an SUð5Þ or SUð3ÞC � SUð2ÞL �Uð1ÞY subgroup
of the global SUðNf � ~NcÞ symmetry as in (4.5), the fields

	, ~	, ZU, and ~ZU will be charged under the standard model
gauge group and act as messengers of supersymmetry
breaking to the sparticle sector. (We have seen in
Secs. III C and IVA that the fields Z and ~Z can be de-
coupled from the supersymmetry-breaking sector and be
given very heavy masses ofOð�Þ, so their interactions with
the sparticle sector can be completely ignored.) The mes-
senger masses may be computed from (3.21) and (3.22); we
refer the reader to [9] for the details. Very roughly, at
leading order the fermionic components have masses
�h�, while the bosonic components have masses �0,
h�, and 2h�; the massless bosons will acquire a mass
�gSM� when the flavor group is gauged. In the standard
model embedding of (4.5), we have 4� ð5þ �5Þ messen-
gers, so that gauge coupling unification is in principle
possible (for a detailed discussion of unification in these
models, see Appendix B).
The gauge-mediated two-loop contribution to the sfer-

mion squared masses is parametrically given by

m2
GM � C

�
g2

16�2

�
2 ðhFXU

Þ2
M2

; (4.10)

where g is a standard model gauge coupling, FXU
� h�2 is

the supersymmetry-breaking F term of the field XU, and
M� h� is a typical messenger mass. We have neglected a
sum over Dynkin indices and Oð1Þ numbers—the precise
expression is much more complicated and will not be
needed for our purposes. The factor ofC counts the number
of ZU and ~ZU that are 5’s or �5’s of the standard model
SUð5Þ gauge group. For Eq. (4.5) this is C ¼ 2 ~Nc (in the
above example we have set ~Nc ¼ 1), while for the model
discussed in Sec. VB, C ¼ 3 ~Nc. Schematically, the gauge-
mediated contribution to sfermion soft masses is thus

mGM � ffiffiffiffi
C

p g2

16�2
h�: (4.11)

An interesting consequence of unifying flavor and su-
persymmetry breaking is that the Yukawa superpotential

8A third possible contribution, which is incalculable, would
come from corrections to the canonical Kähler potential in the
magnetic theory. These can be expected to give contributions to
soft masses of order �2=�. With our choices of scales, such
incalculable contributions are much smaller than the contribu-
tions from gauge mediation, and can be safely ignored.
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Eq. (4.2) gives matter-messenger couplings, because the
latter also arise from the composite mesons. This can give a
third possible contribution to the sfermion masses. Such
matter-messenger mixings will be largest for the third
generation:

WYuk � 1

Mflavor

ðQ ~QÞH�3 þ 1

M2
flavor

ðQ ~UQÞH�3

! ð�Zþ �2ZUÞH�3 þ . . . (4.12)

Integrating out the messengers produces a negative one-
loop contribution to the sfermion mass,

�m2 �� �2a

16�2
ðh�Þ2; (4.13)

where a ¼ 1 or 2 depending on whether the messengers
come from Z or ZU. In the model of this section, super-
symmetry breaking is produced by XU which couples
predominantly to ZU. Then (4.13) is negligible compared
to the gauge-mediated contribution. However, in Sec. V, we
will present realistic models where supersymmetry is bro-
ken by a linear combination of X and XU; in this case the
coupling ZH�3 produces a negative contribution to the
stop mass (4.13) with a ¼ 1, which is of the same order of
magnitude as the two-loop gauge-mediated mass.
Therefore messenger-matter mixings can significantly de-
crease the stop mass. Modifications of gauge mediation to
include such mixings were studied in [19].

We next consider the gauginos, which receive a gauge-
mediated mass given in [9]. The mass must be proportional
to the R-symmetry breaking, which is dominated by the
spontaneous breaking from the vev of hhXUi ���=b.

Roughly,

m�a
� C

g2a
16�2

hhXi � 2 ~Ncg
2
a��; (4.14)

where ga, a ¼ 1, 2, 3, are the standard model SUð3ÞC,
SUð2ÞL, and Uð1ÞY gauge couplings. Notice that the 1=b
factor in the spontaneous R-symmetry breaking vev, X �
��=b, cancels the loop factor.

The gauge-mediated contribution to the sfermion and
gaugino masses are in principle comparable if

�� ��=ð16�2Þ: (4.15)

Gauge-mediated masses of Oð1 TeVÞ are obtained if (as-
suming h� 1 for now)

�� � 1 TeV;
ffiffiffiffi
F

p ���Oð100–200 TeVÞ; (4.16)

so that the direct supersymmetry-breaking contribution
from the Coleman-Weinberg potential to the first (and
possibly second) generation sfermions is

mCW � 10 TeV: (4.17)

A more detailed analysis reveals that the gauge-
mediated contribution to the colored sfermions in this

simple model is larger than the gauge-mediated contribu-
tion to the gaugino masses. In the model of this section,
where C ¼ 2 ~Nc [Eq. (4.5)], setting the bino mass near its
lower bound of �149 GeV [20,21], gives a stop mass of,
very roughly,�4:5 TeV for ~Nc ¼ 1 and�3 TeV for ~Nc ¼
2. For the model in Sec. VB, C ¼ 3 ~Nc, so that the stop
mass is at least, very roughly, �3:5 TeV for ~Nc ¼ 1 and
�2:5 TeV for ~Nc ¼ 2. This makes the model mildly tuned.
However, as discussed above, in the more realistic model
presented in Sec. VB, the one-loop tachyonic contribution
from messenger-matter mixing, Eq. (4.13), is effective in
reducing the stop mass. This mechanism thus helps to
avoid a hierarchy between gaugino and stop masses, that
would otherwise be present. Other ways to avoid this
hierarchy would be to explore alternative classes of vacua
(perhaps along the lines of [22]), where R-symmetry
breaking comes about in a different way.
Finally, the gravitino mass in this theory is simply given

by

m3=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf � ~Nc

3

s
h�2

MP

: (4.18)

For the low supersymmetry-breaking scale considered
here, the gravitino is light and has a mass of

m3=2 � 10 eV; (4.19)

which makes it cosmologically quite safe [23].

C. Supersymmetric flavor

An essential challenge faced by single-sector models—
and, indeed, by all models of supersymmetry breaking and
mediation—is to generate a spectrum of soft masses com-
patible with observational constraints on FCNCs. In gen-
eral, the soft masses for squarks and sleptons explored in
Sec. IVB are not diagonal in the same basis as the fermion
mass matrix, leading to potentially prohibitive FCNCs.9

But the virtue of calculable models of single-sector super-
symmetry breaking and flavor is that phenomenologically
viable spectra may be related directly to microphysical
parameters of the theory, and viable models may be found

9In the single-sector models discussed in this paper, FCNCs do
not only potentially originate from a misalignment of the fer-
mion Yukawa matrices and the sfermion soft masses, but also
from the fact that the standard model fermions couple directly to
the messengers, because both are composite. Therefore, there are
one-loop contributions to, for example, K0 � �K0 mixing from
box diagrams containing messengers. We will discuss these in
Sec. A 3, and find that they do not impose an important
constraint on the models discussed in this paper, since they are
suppressed by a loop factor and the large messenger mass.
Furthermore, (4.12) [and similarly the other Yukawa superpo-
tential terms] can generate FCNC’s from box diagrams, but these
are further suppressed by two or more powers of � and therefore
also negligible.
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as a function of such parameters. In light of the potential
soft terms discussed above, it is thus natural to consider
what ranges of ultraviolet parameters in the adjoint model
give rise to supersymmetric soft spectra compatible with
experimental constraints.

Absent any additional mechanism to generate alignment
between the Yukawa matrices and sfermion soft masses,
spectra compatible with FCNCs may arise from either
approximate universality or decoupling. Universality—
for which the sfermion mass matrices are proportional to
the identity—suffices because the identity is diagonal in
any basis, so that no sfermion mass mixing is generated
when we rotate to the fermion mass eigenbasis. Although
small deviations from universality are acceptable (and,
indeed, inevitable given RG evolution of soft parameters
to the weak scale), they must remain rather small compared
to the overall scale of soft masses.

Decoupling, on the other hand, exploits the observation
that sfermion contributions to FCNCs scale as high inverse
powers of the sfermion mass, and vanish as the sfermion
masses are taken to infinity. The size of the top Yukawa
coupling implies that only the third generation of sfer-
mions needs be near the weak scale to preserve the natural-
ness of weak-scale supersymmetry as a solution to the
hierarchy problem. Fortunately, FCNC constraints are
strongest for the first two generations of sfermions, so
that flavor constraints and naturalness may be simulta-
neously satisfied by making the first two generations heavy
while keeping the third generation light. This approach
leads to ‘‘more minimal’’ [5,6] models with an inverse
hierarchy of sfermion masses. In such scenarios, the
masses of the first two generations of sfermions are con-
strained by the two-loop sfermion contribution to the stop
mass, which renders the stop tachyonic when m~f1

, m~f2
*

20 TeV unless the high-scale stop mass is unnaturally large
[24].

In the models considered here, sfermions of the first two
generations may acquire supersymmetry—breaking soft
masses directly, while all three generations acquire univer-
sal gauge-mediated soft masses. Barring additional super-
potential terms mixing the mesons of the magnetic theory,
these soft masses are all diagonal in the same basis as the
nondiagonal Yukawa textures (1.2). If the gauge-mediated
contributions are not more than a few TeV, the third gen-
eration of sfermions is light enough to roughly preserve the
naturalness of electroweak symmetry breaking. It is then a
question of how large the additional contributions to the
first and second generations coming from mCW must be in
order to avoid FCNCs. In general, both must be * 5 TeV
with some degree of degeneracy; a detailed treatment of
FCNC and other constraints on the sfermion spectrum is
contained in Appendix A.

The great virtue of calculable single-sector models is
that these flavor constraints may be related explicitly to the
UV parameters of the theory. In the limit ~mU=� � 1, only

the first generation feels supersymmetry breaking directly.
In general, such a spectrum—with sfermions of the first
generation much heavier than those of the second and
third—yields prohibitive contributions to FCNCs. How-
ever, if the coupling h is sufficiently small, it is possible
for such contributions to satisfy approximate universality
given a certain degree of tuning. For larger values of
~mU=�, both first and second generations obtain significant
soft masses directly from supersymmetry breaking, realiz-
ing a calculable version of the ‘‘more minimal’’ scenario.
This is perhaps the most natural spectrum of supersymme-
try breaking in such theories, and (calculably) reminiscent
of the dimensional hierarchy spectra in [2]. Finally, it is
possible for all three generations to receive soft masses
solely from direct gauge mediation if the chiral ring is
extended slightly. These models naturally satisfy FCNC
constraints via universality.
We will now detail these approaches in Sec. V.

V. MODELS

In light of the potential soft terms described in Sec. IVB
and the supersymmetric flavor constraints outlined in
Sec. IVC and Appendix A, let us now consider various
limits of the adjoint theory that give rise to phenomeno-
logically viable spectra. In Sec. VA, we will consider the
theory in Sec. III C, which will give approximately univer-
sal sfermion masses; it involves the simple embedding
discussed in Sec. IVA, but requires some degree of tuning
to satisfy FCNC constraints. In Sec. VB, we will consider
models with the familiar inverse hierarchy of soft masses;
these models readily satisfy flavor constraints but entail a
slightly less minimal embedding of standard model fields.
In Sec. VC, we expand the chiral ring of the adjoint model
of Sec. III C to include theories where all three generations
obtain universal masses from direct gauge mediation. In
this case, the composite field that breaks supersymmetry is
distinct from those giving rise to standard model genera-
tions, but all the ingredients of supersymmetry-breaking,
mediation, and flavor are contained within the same gauge
sector.

A. A model with approximate universality

We begin by exploring the simplest single-sector model
that requires only the minimal standard model embedding
of (4.7). Though admittedly not the most elegant model,
this approach will illustrate some of the issues that will
reappear in more elaborate alternatives.
In the limit ~mU=� � 1, only the first generation feels

supersymmetry breaking directly; the meson � in which
the fields of the second generation are embedded remains
approximately supersymmetric. Gauging the flavor sym-
metry then produces universal gauge-mediated masses for
all three generations. From Eqs. (4.9) and (4.11), these
respective soft masses are
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mCW � h

4�
h�; mGM � �g

4�
h�; (5.1)

where �g ¼ g2SM=4�. The first generation thus obtains a

mass squared of m2
~f1
�m2

CW þm2
GM, while the second

generation obtains a mass squared of only m2
~f2
�m2

GM.

For low sfermion masses where mGM � 3 TeV, we need
m~f1

to be the same as m~f2
within�2–5% in order to avoid

large FCNCs (see Appendix A). This requires the
Coleman-Weinberg contribution to the first-generation
mass to be smaller than the gauge-mediated mass, which
may be achieved only if h & �g=4. There is no reason for h

to be so small, but it is interesting that tuning a single
dimensionless coupling can help solve the problem from
FCNCs. In this case, the direct supersymmetry-breaking
mass from the one-loop effective potential is much smaller
than the gauge-mediated mass, and the spectrum looks like
a very minor deviation from that of standard gauge
mediation.

One tension in the reasoning of the previous paragraph
comes from the observation that h � 1 is in conflict with
astrophysical constraints that imply a lower bound h *
Oð1Þ. Indeed, recall that in scenarios with a low scale of
supersymmetry breaking and warm gravitino dark matter
the gravitino mass has an upper bound of �16 eV, which
translates into a bound on the supersymmetry-breaking
scale of [23]

V1=4
min ¼ j ffiffiffi

h
p

�j & 260 TeV: (5.2)

Fixing the stop mass in (5.1) then gives a lower bound on h,

ffiffiffi
h

p
*

4�

�g

m~t

260 TeV
�Oð1Þ: (5.3)

Of course, this bound may be obviated by large entropy
production at late times.

Absent a cosmological solution, this tension may also be
removed by the following simple modification. Let us
allow two different � parameters, �1 >�2,

W � �h trð�2�UÞ ¼ �h�2
1 trYU � h�2

2 trXU: (5.4)

(Notice that nothing forbids such different �’s once the
global symmetry group is explicitly broken by weakly
gauging the standard model subgroup.) By the rank condi-
tion, the vev of � is set by the largest �1,

h�~�i ¼ �1:

On the other hand, the supersymmetry-breaking scale is

jWXU
j ¼ jh�2

2j:
In this more general setup, the direct and gauge-

mediated masses become

mCW � h

4�

h�2
2

�1

; mGM � �g

4�

h�2
2

�1

: (5.5)

The upper bound on the scale of supersymmetry breaking
from the astrophysical bound on the gravitino mass now
does not limit h, but rather

�1 &
�g

4�

ð260 TeVÞ2
m~t

: (5.6)

Then it is possible for h to be small enough to satisfy
approximate universality. Although the tuning of h to
accommodate FCNC constraints is somewhat arbitrary, it
gives rise to a satisfactory spectrum of sfermions in the
simplest embedding of standard model fields into the ad-
joint model.

B. A model with decoupling

A more familiar approach to viable single-sector super-
symmetry breaking with a dimensional hierarchy is to
adopt a decoupling solution in which the first- and
second-generation sfermions are heavy. Indeed, this is
the natural spectrum arising in adjoint models for finite
values of ~mU=�.
From the couplings in the superpotential (3.14), the

supersymmetry-breaking sector induces a soft mass for
the second generation at one loop of order

mCW;2 �
�
Nc � Nf

gU

mU

�

�
h

4�
h�; (5.7)

where the factor inside the brackets comes from the fact
that the interaction between � and the magnetic quarks is
proportional to mU=�, and the second factor is the usual
Coleman-Weinberg mass (3.24). Order-one numerical fac-
tors coming from the precise matching (3.12) have been
absorbed into gU, and we have set ~Nc ¼ 1. Recall that mU

and gU are the mass and cubic coupling of the adjoint field
U in the electric theory.
In our case, ðNc � NfÞ �Oð10Þ and gU can be made

smaller than 1. By takingmU=� small but finite (unlike the
case mU=� ! 0 of Sec. III C and VA), it is possible to
obtain

Nc � Nf

gU

mU

�
�Oð1Þ: (5.8)

For h�Oð1Þ, the direct supersymmetry-breaking mass
contribution is larger than the gauge-mediated effect,

mCW;2 � h

4�
h�>

�g

4�
h�; (5.9)

and both first- and second-generation sfermions can be
made much heavier than the stop.
There is, however, a small obstacle to this simple picture

that needs to be overcome. From the superpotential (3.14),
the magnetic quarks q, ~q only couple to the linear combi-
nation

Nc � Nf

gU

mU

�
�þ�U; (5.10)
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which gets a mass from the one-loop Coleman-Weinberg
potential

VCW � m2
CW tr

��
Nc � Nf

gU

mU

�
X þ XU

�y

�
�
Nc � Nf

gU

mU

�
X þ XU

��
: (5.11)

The orthogonal combination remains light. Therefore, at
first glance it seems that the effect of increasing the coef-
ficient mU=� is simply to redefine which scalar acquires a
one-loop mass and which scalar receives a mass only from
gauge mediation. At the level of the sfermion mass matri-
ces, however, this would generate large off-diagonal ele-
ments strongly constrained by FCNCs; such mixings
would require prohibitively large sfermion masses
* 100 TeV to evade flavor constraints.

We can solve this problem by noticing that if the first-
generation sfermions (10þ �5) come from matrix elements
XU;ij which are different from the matrix elements Xkl

containing the second generation, then (5.11) will give
independent masses to each of the standard model sfer-
mions. In other words, both generations can come from the
linear combination (5.10) albeit from different matrix ele-
ments, and both then acquire comparable one-loop masses.

For this, we need to be able to have two different (10þ
�5) inside each meson. The minimal choice corresponds to

Nf ¼ 17; Nc ¼ 33;

with the SUð5ÞSM embedding

Q� 1þ ½1þ 5þ 5þ �5�; ~Q� 1þ ½1þ �5þ �5þ 5�:
Each of the mesons X and XU contains two independent
(10þ �5)’s, plus additional matter that is lifted by coupling
it to spectator fields. The corresponding standard model
generations are identified with orthogonal elements 10þ
�5. To ensure that this happens, the superpotential coupling
Eq. (4.8) of the spectators to the appropriate matrix ele-
ments can be enforced by an approximate discrete symme-
try. For instance, we can consider a vectorlike Z2, with
charge assignments Q� 1þ þ ½1þ þ 5þ þ 5� þ �5þ�, op-
posite charges for ~Q, and withU being odd. Introducing, in

particular, 10� and 5� spectators, the 10� þ �5� mesons

are lifted. Only the 10þ þ �5þ from each Q ~Q and QU ~Q
survive—and these come from different matrix elements
since U is odd. Notice that this discrete group commutes
with the global symmetry group left unbroken by the
SUð5ÞSM embedding. Also, since U ! �U is not a sym-
metry in the presence of a TrU3 superpotential, its coeffi-
cient gU has to be small in order for this analysis to be
approximately correct. In practice, gU & ��Oð0:1Þ is
required.

A fully realistic single-sector model satisfying the
bounds from FCNCs is then possible, albeit with a slightly
less minimal embedding of the standard model into com-

posites of the strong dynamics. Let us consider a simple
example. Take the messenger scale to be

M ¼ h� � 250 TeV: (5.12)

Setting h�Oð1Þ, and mU=��Oð0:01Þ, the sfermion
spectrum at the messenger scale is

m~f1 � 20 TeV; m~f2 � 15 TeV; m~f3 � 2:5 TeV:

(5.13)

The gaugino masses are

m� �Oð100 GeV–1 TeVÞ
for �� �Oð100 GeV–1 TeVÞ; (5.14)

and the metastable vacuum is parametrically long lived. In
this class of models, the number of messengers is 6� ð5þ
�5Þ so that perturbative unification is not possible. It would
be interesting to find a model that unifies and where the
first two-generation sfermions have decoupled to the multi-
TeV scale.
As a final remark connecting with the discussion in

Sec. III D, when (5.8) is satisfied the field breaking super-
symmetry and R symmetry is a linear combination of �
and �U with order one coefficients—see Eq. (5.10).

Turning on generic superpotential deformations �Wel ¼
ðQ ~QÞnðQU ~QÞm, the properties of the metastable vacuum
will be fixed by only the largest linear and quadratic meson
terms. These have to satisfy the stability conditions found
in [9], while other terms play a subleading role. Therefore,
the metastable vacuumwill exist and be long lived for quite
generic superpotential deformations.

C. Composite models with direct gauge mediation

So far we have found models where both composite
generation sfermions acquire soft masses from direct cou-
plings to the supersymmetry-breaking sector (see Sec. II
and VB) or where the first generation gets a direct
supersymmetry-breaking mass, while the second predomi-
nantly obtains a mass from gauge-mediation (see
Sec. VA). We saw that in order to satisfy FCNC constraints
in the latter scenario, the one-loop supersymmetry-
breaking mass must be considerably suppressed relative
to the gauge-mediated masses.
This limit suggests a slightly more general ‘‘single-

sector’’ scenario in which supersymmetry breaking still
arises from strong dynamics of the SUðNcÞ gauge group,
but all the soft masses come predominantly from gauge
mediation. In this case, the flavor problem would be solved
automatically due to the flavor blindness of the gauge
interactions, which produce universal sfermion masses.
Though one might argue that this is no longer strictly a
single-sector theory—the fields responsible for supersym-
metry breaking only have a highly suppressed coupling to
the standard model composite fermions—such models still
retain a pleasing amount of compactness. No new ingre-
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dients beyond the fields and interactions of the SUðNcÞ
gauge theory are required, and all the messengers,
supersymmetry-breaking fields, and standard model com-
posites arise from the same dynamics. In this section, we
present a simple deformation of the adjoint model dis-
cussed in Sec. III possessing these properties.

Consider the adjoint model of Sec. III, but allowing aU4

term in the electric superpotential (the general Uk case has
been studied in [12]),

Wel ¼ 1

4

1

�U

TrU4 þ gU
3

TrU3 þmU

2
TrU2: (5.15)

The magnetic dual has gauge group SUð ~Nc ¼ 3Nf � NcÞ,
Nf magnetic quarks ðq; ~qÞ, a magnetic adjoint ~U, and three

gauge singlets

M1 ¼ ~QQ; M2 ¼ ~QUQ; M3 ¼ ~QU2Q:

It will be useful to work in terms of canonically normalized
mesons,

�j ¼
Mj

�j ;

up to order one numerical constants from the Kähler po-
tential as in Eq. (3.10).

Again, we will focus on the case ~Nc ¼ 1, for which the
magnetic dual is a theory of weakly coupled hadrons with
superpotential

Wmag ¼ h trð�3q~qÞ þ 2� Nc

3
h2gU trð�2q~qÞ

þ h2
�
mU

�
þ N2

c � Nc � 2

9
hg2U

�
trð�1q~qÞ; (5.16)

where h ¼ �U=�. In the limit

hgU � 1; h
mU

�
� 1; (5.17)

the dimension two meson �1 and the dimension three
meson�2 almost decouple from the rest of the low-energy
fields ð�3; q; ~qÞ.

These fields ð�3; q; ~qÞ are then used to break supersym-
metry in a by now familiar way. Adding the superpotential
deformation

�Wel � 1

�0

ðQU2 ~QÞ þ 1

�5
0

ðQU2 ~QÞ2; (5.18)

which in the magnetic theory becomes

�Wmag ��h�2 tr�3 þ h2�� trð�3Þ2; (5.19)

breaks supersymmetry by the rank condition, creates a
metastable vacuum at a distance�16�2�� from the origin

of �3 space, and breaks the R symmetry both explicitly
and spontaneously (the latter dominating).

The first and second SM generations are identified with
�2 and �1, respectively, with the third generation being
elementary. In the limit (5.17), none of the composite
generations participate directly in the supersymmetry
breaking. Therefore, the sfermion soft squared masses
come predominantly from gauge mediation, involving the
supersymmetry-breaking fields ðq; ~qÞ only at two loops.
These contributions are flavor blind and hence there are no
flavor problems since all the masses are universal.
It is quite surprising that calculable single-sector models

exist where the composite soft masses come predominantly
from direct gauge mediation. The gauge dynamics we have
found is rich enough to provide marginal couplings (gU
and mU=� in the example above) that control the strength
of the direct supersymmetry-breaking masses. It is possible
to send these parameters to zero without changing the
supersymmetry-breaking scale and messenger masses. It
would be interesting if this mechanism has an analog in
single-sector models with gravity duals [25–28].

VI. CONCLUDING REMARKS

We have introduced and studied calculable models of
single-sector supersymmetry breaking that have fully real-
istic Yukawa textures (implementing the dimensional hier-
archy idea) and satisfy FCNC bounds, considerably
improving earlier constructions [4]. The beauty of these
constructions stems from the way in which the apparently
intricate structure of the minimal supersymmetric standard
model (MSSM) originates from a rather minimal, calcu-
lable gauge theory.
Our discussion focused primarily on a class of models

based on SQCD with fundamental flavors and an adjoint.
These theories possess composites of various dimensions,
controlled by the adjoint superpotential, and exhibit a
surprisingly wide range of interesting behaviors. In certain
parametric limits they give rise to models in which first-
and second-generation sfermions are heavy due to compo-
siteness and decouple. Perhaps more unexpectedly, there
are also models in this class where compositeness gives
rise to realistic Yukawa matrices, but all sfermion masses
come predominantly from gauge mediation and are thus
universal.
The parametric limits presented here represent a fraction

of the possible single-sector models that may emerge from
theories of SQCD with fundamental flavors and a rank 2
tensor field. It would be useful to further explore the range
of possible soft spectra that may be realized in such theo-
ries. Moreover, the models we have considered suffer
somewhat from a large number of extra matter charged
under the standard model gauge groups; it would certainly
be interesting to find other examples of calculable theories
with less unnecessary matter.
Of course, such single-sector theories are but one ap-

proach (among many) for explaining the standard model
flavor hierarchy. We conclude by comparing and contrast-
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ing the mechanism discussed in this paper with other
explanations for the Yukawa hierarchies which exist in
different classes of models.

A. Comparison to other explanations

The earliest class of explanations, and probably the best
explored, use the Froggatt-Nielsen idea [29]. Here, one
introduces a new Uð1Þ symmetry, R, broken by the vev of
a new scalar h�1i, which has chargeþ1. One assumes that
all of the standard model fermions are exactly massless in
the limit that R is unbroken—that is, one assigns different
charges to their left and right-handed components. Finally,
one assumes the existence of some very heavy set of
fermions (with various values of R) at a scale h�0i �
h�1i, whose mass is set by the expectation value of another
R-neutral Higgs field�0. By assigning appropriate charges
under R to the standard model fermions, one can then
generate Yukawa couplings suppressed by different powers
of � ¼ h�1i=h�0i. Models which are broadly successful in
accounting for flavor physics can emerge from this frame-
work. Some of the most successful models have more than
one small parameter. The scales involved are not very
tightly constrained by data, so such models can account
for observed physics and remain untestable in the foresee-
able future.

An idea closely related to our own is to consider super-
symmetric models where the MSSM generations interact
with a strongly coupled superconformal field theory (at
least over some range of energies). If the MSSM Yukawa
couplings receive different anomalous dimensions, this can
provide an explanation of Yukawa hierarchies [30]. A
recent exploration of this idea appears in [31]. We note
that this is very similar to our mechanism; here, the large
anomalous dimension comes from the fact that the MSSM
fields are secretly composite and hence the Yukawa cou-
plings are higher dimension operators above the compo-
siteness scale�. In addition, our mechanism correlates this
structure with the dynamics of supersymmetry breaking.

A recent class of interesting, field-theoretic ideas ap-
pears in [32]. These ‘‘domino theories’’ are incompatible
with conventional low-energy supersymmetry, but are oth-
erwise an economical proposal for generating realistic
Yukawa textures.

A very wide class of interrelated ideas uses the physics
of extra dimensions:

(i) In superstring compactifications, e.g. those of the
heterotic string, it is easy to find supersymmetric
scenarios where the tree-level Yukawa couplings
are related to topological invariants of the compacti-
fication manifold. These invariants often give some
vanishing couplings, usually because the homology
cycles on which some of the matter fields are local-
ized do not intersect with the Higgs or with the other
matter field in the relevant Yukawa coupling. In such
a circumstance, the leading coupling is generated by

world-sheet or space-time instanton effects, due to
supersymmetric nonrenormalization theorems. (The
instanton is a nonlocal object in the internal dimen-
sions, and can connect the disconnected homology
cycles). In a topology where only the top quark
Yukawa is present at tree level, this can provide an
attractive explanation for the rough features of the
fermion mass matrix. See, e.g. chapter 16 of [33] for
an elementary introduction. Note that this idea re-
quires multiple parameters to match the observed
spectrum, since each instanton action is a priori
unrelated to the others; this idea also remains un-
testable until one reaches the compactification scale,
which is typically�MGUT. Many modern variants of
this idea also exist in brane-world scenarios involv-
ing Dbranes in Type II string theories. For recent
discussions in heterotic and Type II models, see
[34,35], for instance. Very recent work in the context
of F theory, where instantons do not play an impor-
tant role in the attempts to explain flavor physics, is
summarized in [36].

(ii) In theories where the standard model gauge fields
propagate in ‘‘thick’’ branes (e.g. live in flat extra
dimensions which are not excessively large), one
can obtain Yukawa hierarchies by localizing the
matter fermions within these branes [37] (see also
[38,39]). In these split fermion scenarios, there are
parameters governing both the location of the fer-
mions (and the Higgs scalars), and the thickness or
form of their wavefunctions. In many ways, this is
similar to the first scenario above. With a small set
of such parameters, one can find acceptable scenar-
ios. These models can be (indirectly) testable at the
TeV scale, but need not be [40].

(iii) In theories with warped (AdS-like) extra dimen-
sions, with standard model gauge fields in the bulk,
one can try to explain flavor by localizing fermions
at different points along the radial direction of anti-
de Sitter (AdS) [41]. Such theories are dual to large
N gauge theories [42]. Fields localized in the IR are
composites of the conformal field theory (CFT)
dynamics, while those localized in the UV are
elementary fields external to the CFT. It can be of
interest to have either an elementary Higgs (e.g. in
a supersymmetric scenario where supersymmetry
is broken at the end of the warped throat geometry),
or a composite Higgs (e.g. in nonsupersymmetric
Randall-Sundrum scenarios). In the former case,
the fermions localized at the IR end of the geometry
(which are highly composite) will have the smallest
Yukawa couplings, while in the latter case the
highly composite fermions will have the largest
Yukawa couplings. In such scenarios, like in the
split fermion scenarios, there are again typically
several parameters; they are now associated with
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the anomalous dimension of the CFT operator
which couples the standard model fermion to the
large N CFT. The nonsupersymmetric scenarios of
this sort are likely to be testable at the LHC due to
the existence of charged, light Kaluza-Klein modes
coming from the TeV-scale end of the throat ge-
ometry. In the supersymmetric scenarios this scale
is considerably higher, since it is associated with
supersymmetry breaking, and there may be no
standard model charges visible at this scale in any
case (since there is no need for the standard model
gauge fields to have support in the entire warped
geometry). In this general framework, there are in
fact recent steps toward making holographic duals
of models quite similar to the ones we have con-
sidered [25–28].

In several of these cases, there are clear implications for
the physics of grand unification. In the Froggatt-Nielsen
models, one must extend the GUT group by an additional
Uð1Þ and add new matter multiplets at a high scale. This is
not compatible with standard SUð5Þ GUTs. In the cases
with split or warped localized fermions, one has the normal
difficulties associated with ‘‘explaining’’ unification as
opposed to postulating it by tuning additional matter con-
tent (which is of course unnecessary in the MSSM). In
particular in string theory realizations of the third scenario,
it is challenging to avoid Landau poles, due to the large
number of massive matter fields involving in typical con-
structions of the observable sector and the large N CFT
(see, e.g. Sec. 5 of [26]). The case with instanton-
suppressed Yukawa couplings is naively compatible with
unification, though it introduces new parameters and ren-
ders the apparent relations in, e.g. (1.2) somewhat ad hoc.

The explanation of flavor in our single-sector models is
most similar in spirit to the last extra-dimensional scenario
we discussed, in the supersymmetric case with an elemen-
tary Higgs and small couplings for the highly composite
fermions. The composites in our models are analyzed via
Seiberg duality instead of using AdS/CFT duality, but both
classes of models rely on compositeness to suppress
Yukawa couplings. We are close to having models which
avoid Landau poles, but the pile-up of extra matter fields at
the scale � where the composite generations are generated
remains an obstacle to making models with honest, weakly
coupled unification. Since our models involve at most one
or two parameters in the flavor sector, they are quite
competitive in terms of predictivity with all of the classes
of scenarios enumerated above. The correlation between
soft terms and Yukawa couplings, evident in most of the
single-sector models (with at least one and often both of
the first two generations having large sparticle masses in
most of the known classes of models), is a further predic-
tion which is absent in the nonsupersymmetric theories, in
supersymmetric realizations of the Froggatt-Nielsen
mechanism, and in the methods based on instanton calcu-
lus in supersymmetric string compactifications.
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APPENDIX A: CONSTRAINTS FROM
FLAVOR-CHANGING NEUTRAL CURRENTS

As is often the case with theories of supersymmetry
breaking, the sfermion mass matrix is generally not diago-
nal in the same basis as the fermion mass matrix. The
Glashow-Iliopoulos-Maiani mechanism does not operate
for such general squark masses, leading to potential flavor-
changing neutral currents in conflict with experimental
bounds. In order to make meaningful contact with experi-
mental limits, we will parametrize the contributions to
FCNCs following [43] (for an up-to-date analysis of
FCNCs see [44]).
In the single-sector models under consideration, the

Yukawa matrices �u, �d, �e are generated at the scale
Mflavor with textures (1.2) dictated by the scaling dimen-
sions of different composite states (in the case of the first
two generations) or elementary states (in the case of the
third generation) of the UV theory. When supersymmetry
is broken, the squarks and sleptons of the first, or the first
two, generations may acquire supersymmetry-breaking
soft masses directly, while all three generations acquire
universal supersymmetry-breaking soft masses from gauge
mediation. Barring additional superpotential terms mixing
the mesons of the magnetic theory, these soft masses are all
diagonal in the same basis as the nondiagonal Yukawa
textures (1.2).
To reach the physical mass eigenbasis, the fermion mass

matrices Mu ¼ vu�u, M
d ¼ vd�d, and Me ¼ vd�e may

be diagonalized by bi-unitary transformations

Vu
LM

uVuy
R ¼ Du; (A1)

Vd
LM

dVdy
R ¼ Dd; (A2)

Ve
LM

eVey
R ¼ De; (A3)

where, for example, Du ¼ diagfmu;mc;mtg. Likewise, we
may write the 6� 6 squark mass matrices ~Mu2, ~Md2, ~Me2

as

~M x2 ¼ ~Mx2
LL

~Mx2
LR

~Mx2
RL

~Mx2
RR

� �
; (A4)

where x ¼ u, d, e and, for example, ~Mu2
LL is the soft mass

matrix for the squarks uL coming from the doublets Q,
while uR are those coming from the singlets �u. Both ~Mx2

LL
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and ~Mx2
RR are Hermitian and come directly from soft

masses, while ~Mx2
LR and ~Mx2

RL come from the trilinear A
terms. We will henceforth concentrate on the case where A
terms are vanishingly small at the supersymmetry-breaking
scale (they will be regenerated by RG flow, but still sup-
pressed by a loop factor), so that ~Mx2

LL and ~Mx2
RR are the

quantities of interest. For simplicity, we will also assume
that ~Mx2

LL and ~Mx2
RR are identical.

Although the sfermion mass matrices ~Mx2
LL, ~Mx2

RR are
generated without off-diagonal elements, the transforma-
tion to the fermion mass eigenbasis (A4) also rotates the
sfermions and produces mass mixings between different
generations of order

ð� ~Mx2
MNÞij ¼ ðVx

M
~Mx2
MNV

xy
N Þij (A5)

where theM, N refer to L and R. In the case where the off-

diagonal terms in ~Mq2
LL and ~Mq2

RR are smaller than the
diagonal ones (as they are in the models of interest) and
the Vx

L;R are close to the identity, it is conventional to

parameterize FCNC constraints via bounds on the dimen-
sionless quantities

ð�x
MNÞij ¼

ðVx
M
~Mx2
MNV

xy
N Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVx
M
~Mx2
MNV

xy
N ÞiiðVx

M
~Mx2
MNV

xy
N Þjj

q : (A6)

The �ij thus measure the relative size of the off-diagonal

components in the sfermion mass matrices in a basis where
the fermion mass matrices are diagonal. They can be con-
strained from measurements of, e.g. K0 � �K0 or D0 � �D0

mixing and the rare decays � ! e
 and b ! s
.

1. Constraints on single-sector models

Relatively careful constraints on the sparticle spectrum
may be placed on single-sector theories such as those
considered here, owing to the fact that the Yukawa textures
and soft masses are both specified by the dynamics. This
allows the degree of alignment between fermion and sfer-
mion masses to be quantified, thereby ameliorating more
conservative bounds on arbitrary mass matrices. Here we
will place bounds on first- and second-generation sfermion
masses for flavor models involving a Yukawa texture of the
form (1.2). These constraints are germane to the single-
sector models developed above, but also pertain to other
flavor models with similar textures.

Constraints for FCNCs are by far the strongest on the
down quark sector, owing to relatively tight limits on the
KL � KS mass difference. As such, we will focus here on
bounds arising from the down sector, under the assumption
that the sfermion masses in all three sectors will be ap-
proximately similar; bounds on the up quark and lepton
sector provide considerably weaker constraints on the soft
spectrum.

For simplicity, we consider a Yukawa texture of the form

�d ’
�4 2�3 1

4 �
2

2�3 3�2 �
1
4 �

2 � 1
4

0
B@

1
CA; (A7)

where we have chosen the numerical coefficients to give us
nonzero eigenvalues approximately reproducing the down-
sector quark masses when �� 0:1, tan�� 14, and v ¼
246 GeV. This gives us down, strange, and bottom masses
3 MeV, 152 MeV, and 5 GeV, which are close to reality and
give realistic FCNC bounds. Naturalness dictates that the
stop mass should not be much heavier than 1–2 TeV, which
sets the rough scale of gauge-mediated contributions to all
three generations (in some, but not all, of the models we
consider, the stop mass at the high scale cannot be much
less than a few TeV—see Sec. IVB). When this is the only
source of supersymmetry breaking, (A6) is always diago-
nal and FCNCs are negligible. However, in addition to the
gauge-mediated contribution, the first and second-
generation squarks and sleptons may obtain additional
soft masses directly from supersymmetry breaking, leading
to an inverse hierarchy. The size of additional contributions
to the soft masses m~f1

, m~f2
of the first two generations is

then constrained by FCNCs.
The FCNC constraints are strongest for the parameter

ð�dÞ12, which parameterizes mixing of the first and second-
generation down-type squarks and is constrained by K0 �
�K0 mixing; the bound is approximately ð�dÞ12 

2:5� 10�3

ffiffiffiffiffiffiffiffiffiffiffiffi
m~f1

m~f2

p
500 for m2

~g ’ 0:3m~f1
m~f2

(and weakens

with increasing gluino mass). The constraints on first-
and second-generation mixing in the up quark sector
from D0 � �D0 are weaker by roughly a factor of 2, while
the constraints on the lepton sector from � ! e
 are
weaker still. We may also constrain the matrix elements
�d
13 from B0 � �B0 mixing and �d

23 from the rare process

b ! s
, though again these constraints prove far weaker
than those arising from K0 � �K0 mixing.
We also note that in the single-sector models of Sec. V,

the standard model fermions couple directly to the mes-
sengers, because both are composite. Therefore there are
one-loop contributions to, for example, K0 � �K0 mixing
from box diagrams containing messengers. We will discuss
these in Sec. A 3.

2. Constraints from K0 � �K0

In order to constrain the possible values of m~f1
and m~f2

via the parameters ð�d
LLÞ12 and ð�d

RRÞ12, we can compute
their contribution to the KL � KS mass difference �mK.
This difference has been measured within excellent
precision to be very nearly �mK ¼ ð3:483 0:006Þ �
10�12 MeV [45]. There are standard model contributions
to this quantity that parametrically fall within the measured
value, but depend on hadronic uncertainties to an extent
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that the full contribution is unknown. Thus we can take as
our constraint the requirement that our contribution to
�mK does not exceed (in magnitude) the measured value.
We can extract the contribution to �mK from squark mix-
ing from [43]. These contributions depend on the gluino
mass m~g and the squark masses m~f1

, m~f2
via the mixings

ð�d
MNÞ12 forM, N ¼ L, R. We will assume in our case that

the LR and RL contributions are negligible and that �LL ’
�RR, which is fairly accurate even when the Yukawa ma-
trices are not entirely symmetric. This leads to by far the
strongest constraints on the sfermion mass spectrum, as
shown in Fig. 1.

3. Constraints from K0 � �K0 from messenger loops

In the single-sector models of Sec. V, the standard model
fermions couple directly to the messengers, because both
are composite. Therefore there are one-loop contributions
to, for example, K0 � �K0 mixing from box diagrams con-
taining messengers.

The dimension six operator induced by the messengers
is of order

H�S¼2 � 1

16�2�2
�ds �ds: (A8)

Recall that

hK0j �ds �dsj �K0i �mKf
2
K ¼ ð497 MeVÞð160 MeVÞ2:

Then imposing

�mK � RehK0jH�S¼2
�K0i � 3:5� 10�12 MeV (A9)

on Eq. (A8), gives a lower bound on the supersymmetry-
breaking scale,

� * 160 TeV: (A10)

This constraint can be accommodated in our models. It
is interesting that FCNCs place a lower bound on the scale
of supersymmetry breaking.

4. Constraints from other processes:B0 � �B0,D0 � �D0,
b ! s�, and � ! e�

The mixings ð�d
MNÞ13 may similarly be constrained by

B0 � �B0 mixing from their contribution to �mB ¼
ð3:337 0:033Þ � 10�10 MeV [45]. The calculation is es-
sentially identical to that of the previous case, with the
replacements mK ! mB, ms ! mb, fK ! fB, and m~f2

!
m~f3

. The resulting constraint is much weaker than that

from K0 � �K0.
We may constrain mixing between the second and third

generations via the rare decay b ! s
, using the gluino-
mediated contribution in [43]. In this case, we require that
our contribution not exceed the measured branching ratio
BRðb ! s
Þ ¼ ð3:52 0:23 0:09Þ � 10�4 [46]. The
branching ratio is a strong function of squark mass, and
is satisfied readily for squark masses above 1 TeV.
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FIG. 1. Constraints on first and second-generation sfermion masses. Light gray region ruled out by K � �K-mixing. (a) Dark gray
region ruled out by tachyonic stops at the weak scale [m~tð1 TeVÞ< 0]. We assumed m~g ¼ 500 GeV, m~tð100 TeVÞ ¼ 1 TeV. Note

that the stop mass constraint disappears completely for the m~f1
and m~f2

mass range shown when m~tð100 TeVÞ * 1:6 TeV. (b) Dark

gray region ruled out by stops being too light at the weak scale to give a Higgs mass above LEP limits [m~tð1 TeVÞ & 1000 GeV,
assuming the trilinear coupling is negligible]. We assumed m~g ¼ 500 GeV, m~tð100 TeVÞ ¼ 1:6 TeV.
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Although we have focused here on the down sector,
similar constraints on ð�uÞ12 and ð�eÞ12 arise from D0 �
�D0 mixing and the rare decay � ! e
, respectively.
Assuming the soft masses for all three sectors are para-
metrically similar, these constraints are generally weaker
than those considered above, so we do not show them
explicitly.

5. Constraints from tachyonic stop mass

Finally, we can take into account the upper bound placed
on squark masses by the desire for a positive stop mass at
the weak scale. As noted in [24], overly large masses for
the first and second-generation squarks can drive the stop
mass negative via their two-loop contribution to the stop
mass RG. We can place a conservative bound on the
masses of first- and second-generation squarks by just
considering the interplay between one-loop gaugino con-
tributions and two-loop squark contributions to the stop
soft mass. In particular, we will ignore the contribution
from the top Yukawa, which can drive the stop mass more
negative. We will also ignore the running of the first and
second-generation squark masses, which is (verifiably)
negligible. In this simplified case, we can solve the renor-
malization group equation for the stop mass analytically to
find [24]

m2
~t ð�Þ ’ m2

~t ð�Þ þX
i

2

bi
ðM2

i ð�Þ �M2
i ð�ÞÞC~t

i

� 32 ~m2
1;2

X
i

1

2bi

�
gið�Þ2
16�2

� gið�0Þ2
16�2

�
C~t
i; (A11)

where ~t can refer to ~tL or ~tR with appropriate choice of
Casimirs (the stronger bound is on ~tL), i ¼ 1, 2, 3, bi and
Ci are the usual GUT-normalized � function parameters
and Casimirs, respectively, ~m2

1;2 are the mean squark

masses, � is the low scale (taken to be 1 TeV), �0 is the
scale where the heavy squarks decouple (taken to be
10 TeV), and� is the scale where supersymmetry is broken
and RG flow commences (taken to be 100 TeV). We also
take Mi ¼ g2i M0, where M0 ��� is the unified gaugino

mass.
We may use the running of the stop mass to place two

potential constraints on the masses of first- and second-
generation sfermions. Aweak constraint is the requirement
that the stop retain a positive mass squared at the weak
scale; a stronger constraint is that the stop mass remain
large enough at the weak scale (� 1 TeV, neglecting the
stop trilinear coupling [47]) to lift the Higgs mass above
LEP limits. Aspects of both constraints are shown in Fig. 1.

APPENDIX B: UNIFICATION

As is often the case for theories involving additional
multiplets charged under the standard model, it is natural to

consider whether the perturbative unification of standard
model gauge couplings may be preserved and low-scale
Landau poles avoided. Indeed, many models of metastable
supersymmetry breaking suffer from the ubiquitous
intermediate-scale Landau pole for the standard model
gauge group. However, here it may be marginally possible
to achieve unification at the GUT scale �1016 GeV.
Here, we briefly recall the standard analysis of how extra

SUð5Þ multiplets affect the running of the gauge coupling.
The relevant formula, found in e.g. Sec. 2 of [48], is that

��GUT
�1 ¼ � N

2�
log

�
MGUT

M

�
; (B1)

where

N ¼ XK
i¼1

ni (B2)

is the sum of the Dynkin indices ni of the K extra
SUð5Þ-charged matter multiplets. So each 5 or �5 contrib-
utes 1 to the sum, each 10 contributes 3, each 15 contrib-
utes 7, and each 24 contributes 10.
The 4� ð5þ �5Þ messengers we have at the �100 TeV

scale, in our ‘‘best’’ models, is a safe number to preserve
perturbativity of �GUT, in absence of additional SUð5Þ
charges at higher scales below MGUT. However, we have
a large amount of additional matter at the scales �2=�0

and ��. Even under the assumption that ��MGUT and
we can ignore running due to the latter, the states at�2=�0

will contribute a total Dynkin index given by summing
over the representations in brackets in (4.7), multiplied by
2 (to include the spectators they pair with). The total N just
from (4.7) is 40, and makes it somewhat challenging to
achieve unification before hitting a Landau pole, unless
one pushes �0 dangerously close to MGUT or a larger
Yukawa coupling is used.
It is important to remark that the nonspectator extra

states are composites, which will in fact deconfine around
the scale�. Such composites will clearly contribute differ-
ently to running at energies above � (where we should use
the electric description and count electric quark messen-
gers), and it is conceivable that in some models this would
vitiate the large threshold from encountering this plethora
of states—this has played a crucial role in the ideas of [49].
However, in our concrete models even the electric ‘‘mes-
senger index’’ would be quite large. In addition, the precise
contribution in the energy regime around ��MGUT does
not seem easily calculable, and is naively quite significant.
Thus, although in our construction we have succeeded in
pushing the Landau pole to very high scales, comparable to
MGUT, it would also be interesting to find models where
this problem is completely solved—perhaps along the lines
of [49].
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APPENDIX C: MODELS WITH LESS EXTRA
MATTER

Generically, the class of models discussed in this paper
exhibit a proliferation of charged matter coming from X
and XU. On one hand, this fact is an aesthetic nuisance
since the corresponding masses, arising from cubic cou-
plings in the electric theory, are naturally close to the high
compositeness scale �. More importantly, as discussed in
Appendix B, these states affect the RG running at very high
energies, making perturbative unification challenging. In
addition, the models contain a large number of messengers
in the ð	; ZUÞ sector. These fields have masses�100 TeV,
and thus affect the running of couplings more dramatically.
In certain cases, like the one in Sec. II B and the two
composite generation example in [4], these states lead to
Landau poles below the GUT scale.

Throughout the paper, we have adopted an SUð5Þ nota-
tion, mainly as a practical way of simplifying the group
theory calculations, with the understanding that SUð3ÞC �
SUð2ÞL �Uð1ÞY quantum numbers could be easily re-
introduced at any step. In the absence of Landau poles, a
physical consequence of the entire field content (except the
two light Higgs doublets) fitting into SUð5Þ representations
is unification. In this section we explore what happens if we
build models dropping the SUð5Þ condition. We will see
that both the amount of extra matter in X and XU and the
number of messengers is substantially reduced.

We illustrate our ideas with the adjoint model of Sec. III.
The minimal model corresponds to taking Nc ¼ 15, Nf ¼
8 and embedding the SUð3ÞC � SUð2ÞL �Uð1ÞY into
SUð8Þ according to

Q� ½ð3; 1Þx�1=3 þ ð1; 2Þx�1=2 þ ð1; 1Þx�1 þ ð1; 1Þx�
þ ð1; 1Þ0

~Q� ½ð�3; 1Þ1=3�x þ ð1; 2Þ1=2�x þ ð1; 1Þ1�x þ ð1; 1Þ�x�
þ ð1; 1Þ0: (C1)

The parameter x is fixed by imposing TrðYm2Þ ¼ 0, so that
no FI term for Uð1ÞY is generated after integrating out the
messengers. X and XU decompose as

ðð3; 2Þ1=6 þ ð�3; 1Þ1=3 þ ð3; 1Þ�2=3 þ ð1; 2Þ�1=2 þ ð1; 1Þ1Þ
þ ½ð8; 1Þ0 þ ð�3; 2Þ�1=6 þ ð3; 1Þ2=3 þ ð3; 1Þ�1=3 þ ð1; 3Þ0
þ 2� ð1; 2Þ1=2 þ ð1; 2Þ�1=2 þ ð1; 1Þ1 þ 4� ð1; 1Þ0�;

(C2)

namely, a full standard model generation plus additional
matter, shown in square brackets. We see that the amount
of extra matter in X and XU has been reduced to less than a
third of that in (4.7). x naturally drops out from (C2), since

it comes with opposite signs in the corresponding Q and ~Q
entries.
Let us now focus on the messengers coming from the

ð	; ZUÞ sector. Their hypercharges do depend on the value
of x. Interestingly, setting x ¼ 0 we can form a 5 of SUð5Þ
by combining the ð3; 1Þ1=3 from ~	 and the ð1; 2Þ�1=2 from 	
(and similarly for �5 and ZU and ~ZU). In this case, the
messengers become

2� ½ð5þ �5Þ þ ðð1; 1Þ1 þ ð1; 1Þ�1Þ þ 2� ð1; 1Þ0�; (C3)

where we have used a hybrid SUð5Þ-standard model nota-
tion to emphasize that the entire low-energy spectrum is in
full SUð5Þ representations modulo two Y ¼ 1 pairs. The
number of charged messengers is also reduced, by approxi-
mately a factor of 1=2, with respect to the example in
Sec. III, ameliorating the Landau pole problem discussed
in Appendix B.
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