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1. Introduction

A longstanding problem in gauge/gravity duality is to describe the region inside a

black hole horizon in terms of the dual gauge theory. There have been various interesting

approaches to this problem [1,2,3] but none have directly addressed the question of how to

describe the observations of an infalling observer. We will present a proposal for how to do

this, using the dynamics of rolling scalar fields in the gauge theory and their manifestation

in terms of D-brane probes on the gravity side.

Consider the patch of AdS5, with metric

ds2 =
r2
p

ℓ2
(−dt2p + t2pdσ2) +

ℓ2

r2
p

dr2
p. (1.1)

Here we have started with Poincaré coordinates, but replaced the constant-rp Minkowski

space slices R3,1 with a patch of Minkowski space consisting of the backward light cone of

a point; this patch is described by Milne coordinates with spatial slices equal to hyperbolic

3-space H3, with constant curvature metric dσ2. The dual gauge theory describing this

lives on the geometry

ds2 = −dt2p + t2pdσ2 (1.2)

or equivalently on the static cylinder geometry

ds2 = −dη2 + ℓ2dσ2 (1.3)

obtained from (1.2) by a conformal transformation that is valid away from tp = 0.

Placing a D3-brane at constant rp is dual to the gauge theory with a scalar field

VEV turned on breaking its U(N) gauge symmetry down to U(N − 1)×U(1). The radial

collective coordinate of the D3-brane, which corresponds to the VEV of the scalar field

eigenvalue, is governed at low energies by the DBI action. This is obtained by integrating

out the other degrees of freedom in the gauge theory.1

Compactifying the hyperbolic space, by orbifolding H3 by a discrete group of isome-

tries Γ, leads to a spacetime with a singularity at tp = 0. As we will review in §2, this

spacetime is in fact a static black hole [4] whose event horizon is shown in figure 1a. (This

is a higher dimensional generalization of the BTZ black hole in three dimensions.)2

1 A similar action describes the low energy dynamics of the full set of low energy degrees of

freedom on the D3-brane. One can also generalize to a stack of n ≪ N D3-branes with interacting

degrees of freedom; a fair amount is known about this“non-abelian DBI” action.
2 Other singularities in spacetimes with holographic duals have been described in [5,6]. These

correspond to gauge theories with dimensionful or time-dependent couplings, so there is no static,

non-singular presentation of the gauge theory as our system has.
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Fig. 1: A black hole can be obtained from the Poincare patch by compactifying

along hyperbolic spatial slices. The (green) dash-dot line denotes a D3-brane probe.

(a) The (blue) dashed lines denote spatial slices in Poincaré coordinates (b) The

(blue) dashed lines are spatial slices in Schwarzschild coordinates.

In the figure, we also indicate the trajectory of the D3-brane at constant rp. Well

before approaching the singularity, while its dynamics is still described to a very good

approximation by the DBI action, this D3-brane falls through the horizon of the black

hole. An infalling observer on the D3-brane is thus described in the Yang-Mills theory by

the low energy effective action for the scalar field rp and its superpartners. We will show

that these variables remain classical through the horizon, providing a simple description

of an observer falling inside the black hole.

An observer outside the black hole, on the other hand, can be described on the gravity

side by standard Schwarzschild coordinates [4], with metric:

ds2 = −
(

r2

ℓ2
− 1

)

dt2 +
dr2

(

r2

ℓ2 − 1
) + r2dσ2 . (1.4)

The equal-t time slices are depicted in figure 1b. As we will describe below, the field theory

duals of the two descriptions are related by a conformal transformation to a static cylinder

(1.3) combined with a field-dependent time reparameterization. This second set of gauge

theory variables describes the black hole in terms of a thermal field theory. The combined

transformation produces a DBI action in Schwarzschild coordinates. This effective action

breaks down near the horizon because of the coordinate singularity there. It takes forever
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to reach the horizon in Schwarzschild time t, and as we will discuss further below the

fluctuations about the classical solution grow large in these variables. These features

reflect the thermalization of initial excitations in the gauge theory.

Nonetheless, both sets of variables descend from the Yang-Mills description, as we will

describe in §3, and so one should be able to map phenomena seen in one set of variables to

phenomena in another. We will describe and compare the physics in different frames in §3,

and construct the transformation of quantum variables between these frames in §4. Given

these results, we can begin to attack some well-known problems in black hole physics.

The black hole can be formed naturally from a collapsing shell of N D3-branes, and

eventually decays as we will discuss in §5. The description of the black hole interior pro-

vided by the scalar field dynamics may help us gain insight into the problem of information

loss. Although we began with hyperbolic black holes derived in the Poincaré patch of AdS5,

our proposal can be generalized to apply to other types of black holes as well.

Having found a way to follow matter falling inside the horizon, one can now ask what

happens near the black hole singularity. At present our discussion is necessarily qualitative

since both the bulk and the boundary theory become strongly coupled. Nevertheless, an

interesting picture emerges, which we also discuss in §5. The physics near the singularity

is associated with a rolling scalar field, just like earlier discussions of singularities in AdS

[7,8]. However, there are several crucial differences. In these papers, the bulk singularities

only arose after the field theory was modified with a multi-trace operator which produced a

potential unbounded from below. The Hamiltonian was ill defined without some prescrip-

tion for a self adjoint extension, and the singularity was associated with the scalar field

rolling off to infinity; that is, with ultraviolet physics. In the present case, although we

again have a potential unbounded from below, there is no need for multi-trace operators or

self adjoint extensions. Furthermore, in our class of examples, the location of the would-be

singularity is at the origin in scalar field space rather than at infinity, a regime governed by

infrared physics, specifically the corresponding effects of the extra light states at the origin

along the lines of [9,10,11].3 In particular, near the singularity there is no local description

of the physics in terms of scalar field eigenvalues, since the full set of U(N) adjoint matrix

degrees of freedom participates in the dynamics.

We will present some further speculations and directions for future work in §6.

3 See [12] for a recent discussion of these effects in black hole physics in AdS/CFT, and [13]

for previous discussions of related effects.
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2. Hyperbolic black holes

The metric (1.1) has a Killing field which is timelike near infinity and spacelike near

the singularity. To make this manifest, we introduce new coordinates

tp = − rℓe−t/ℓ

(r2 − ℓ2)1/2
, rp = (r2 − ℓ2)1/2et/ℓ (2.1)

The metric becomes

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2 (2.2)

where

f(r) =
r2

ℓ2
− 1. (2.3)

We can orbifold H3 by a discrete group Γ, leading to a compact hyperbolic space Σ =

H3/Γ. dσ2 now denotes the metric on Σ. The metric (2.2) takes the standard form of a

static black hole with horizon at r = ℓ having constant negative curvature. The inverse

transformation, taking (2.2) into (1.1), is

r = −rptp
ℓ

, t = − ℓ

2
ln

(

t2p
ℓ2

− ℓ2

r2
p

)

(2.4)

These transformations are valid outside the horizon, i.e., r > ℓ. Analogous formula apply

for r < ℓ. However, a key point for our later discussion is that the Poincare coordinates

tp, rp smoothly cover both the region inside and outside the black hole horizon.

The black hole (2.2) has Hawking temperature TH = 1/(2πℓ), while the same space-

time viewed in Poincare coordinates has zero temperature. This is analogous to the state-

ment that Rindler space has nonzero temperature and can be understood as follows. The

dual field theory will be discussed in detail in the following sections, but for now it suf-

fices to note that the metric at infinity in the black hole spacetime is conformal to the

static cylinder (1.3). Starting with Euclidean space ds2 = dx2 + dy2 + dz2 + z2dθ2 and

rescaling by ℓ2/z2 yields ds2 = ℓ2[dθ2 + dσ2] which is the static cylinder at temperature

TH = 1/(2πℓ). So for any conformal field theory, the standard Minkowski vacuum is

equivalent to a thermal state on this static cylinder4.

As mentioned in the introduction, a curve of constant Poincaré radius rp = R cor-

responds to an infalling trajectory in the black hole: r2(t) = R2e−2t/ℓ + ℓ2. This allows

4 We thank J. Maldacena for suggesting this argument.
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us to construct a simple model of matter collapsing to form the black hole. Consider

a static spherical shell of D3-branes. The metric inside the shell is ten dimensional flat

spacetime, while the metric outside is AdS5 ×S5. If we again introduce Milne coordinates

and compactify the hyperbola, this metric becomes

ds2 = h−1[−dt2p + t2pdσ2] + h[dr2
p + r2

pdΩ5] (2.5)

where

h(rp) =
ℓ2

r2
p

(rp > R), h(rp) =
ℓ2

R2
(rp < R) (2.6)

where R is the radius of the shell in Poincare coordinates. In terms of the black hole

interpretation of the exterior spacetime, the shell starts at large r and collapses to r = 0

forming a horizon at r = ℓ.

Note that the singularity in (1.1) at tp = 0 that appears after compactifying the

hyperbola is naturally viewed as a cosmological singularity in AdS since it is spacelike and

goes out to infinity in finite time. Since this metric is equivalent to (2.2), we are led to the

surprising conclusion that there is no invariant distinction between black hole singularities

and cosmological singularities in this case. Although this singularity is not a curvature

singularity, the slightest perturbation will cause the curvature to diverge.

There is a one parameter family of hyperbolic black holes which generalize (2.2). The

metric again takes the form (2.2) where now

f(r) =
r2

ℓ2
− 1 − µ

r2
(2.7)

These are all solutions to Einstein’s equation with negative cosmological constant.5 These

spacetimes describe static black holes with an event horizon at the largest zero of f and

a singularity at r = 0. The constant µ is a free parameter which is related to the mass of

the black hole by6

M =
3µV̂

16πG5
(2.8)

5 For a more detailed discussion of these solutions, see [4].
6 If one computes this mass using the boundary stress tensor this mass is shifted by a (µ

independent) constant [4]. Since we are interested in dynamical questions, the zero point of the

energy is not important and we will ignore it.
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where V̂ is the dimensionless volume of Σ. These solutions have the unusual property that

there is a horizon even when µ is negative provided µ ≥ µext with

µext ≡ −ℓ2

4
⇒ Mext = − 3V̂ ℓ2

64πG5
(2.9)

For µ > 0, the singularity at r = 0 is spacelike (like Schwarzschild-AdS), but for µext ≤
µ < 0, it is timelike (like Reissner-Nordstrom-AdS). In terms of the horizon radius, r+,

the Hawking temperature of these black holes is

TH =
2r2

+ − ℓ2

2πℓ2r+
(2.10)

In the extremal limit when µ = µext, the horizon radius is r+ = ℓ/
√

2 and TH = 0. For

µ < µext there is a naked singularity.

We believe that one can form these black holes with nonzero mass by throwing in

spherical shells of D3-branes with various energies. However, it is difficult to find exact

ten dimensional supergravity solutions in this case since the shell will radiate. This does

not occur when µ = 0 since the shell is following the orbit of a Killing field (Poincare time

translations). There is no danger of violating cosmic censorship by throwing in a shell

and forming a naked singularity, since we will see in the next section that if the energy is

sufficiently negative, the shell will bounce, and never reach r = 0.

We have seen that the µ = 0 black hole can be described in Schwarzschild coordinates

or Poincare-like coordinates. For our later analysis, it will be very useful to work with a

hybrid system of coordinates which keep the nice time slices of the Poincare coordinates,

but for which the boundary theory naturally lives on the static cylinder. These are given

by

r̃ = −rptp
ℓ

t̃ = −ℓ ln

(

− tp
ℓ

)

(2.11)

(Note that r̃ is the same as the Schwarzschild radial coordinate r.) In these coordinates,

the metric for the µ = 0 black hole is

ds2 = −
(

r̃2

ℓ2
− 1

)

dt̃2 + r̃2dσ2 +
ℓ2

r̃2
dr̃2 +

2ℓ

r̃
dt̃dr̃ (2.12)

These coordinates extend smoothly across the horizon.
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3. The Dual CFT

3.1. CFTs on cosmological vs. static backgrounds

In order to study the systems discussed in the previous section non-perturbatively,

we will analyze the dual CFT. This CFT lives on a non-fluctuating background spacetime

which is homogeneous along hyperbolic spatial slices. Since the N = 4 SYM theory is

conformally invariant, we should obtain the same results from the field theory in any con-

formal frame, modulo subtleties arising in the case of singular conformal transformations.

There are two conformal frames which will prove useful to consider, as discussed in [14].

First, consider the CFT on the spacetime (1.2)

ds2 = −dt2p + t2pdσ2 (3.1)

with dσ2 the metric on H3. This is simply a hyperbolic slicing of flat spacetime, and has

vanishing curvature.

In the presence of additional stress-energy which is homogeneously distributed along

the hyperbolic slices, however, the system becomes singular as tp → 0. Upon orbifolding

by Γ, so that dσ2 is the metric on Σ, then even in the absence of additional sources of

stress energy, the spacetime (3.1) has a Milne-like singularity at tp = 0. The dual bulk

geometry is the region of spacetime covered by the metric (1.1).

Next, consider the cooordinate transformation of (3.1) (with tp < 0) to conformal

time η:

tp = −ℓ e−η/ℓ (3.2)

which yields ds2 = e−2η/ℓ(−dη2 + ℓ2dσ2). We now conformally rescale the metric:

ds2
static = e2η/ℓds2 = −dη2 + ℓ2dσ2 (3.3)

and the operators of the CFT. This maps the CFT on (3.1) to that on (3.3). This trans-

formation is singular at tp = 0. The static metric ds2
static has constant negative scalar

curvature R coming from the hyperbolic spatial slices. This static background spacetime

has no singularity whether or not we compactify the space or include homogeneous sources.

We will argue below that the singularity in the spacetime physics will manifest itself in

this static background through the behavior of the rolling scalar fields of the CFT.
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3.2. Yang-Mills theory and scalar dynamics

The N = 4 SYM theory has six adjoint scalar fields Φi, which together with the gauge

fields are governed by the classical action

SSY M =
−1

g2
Y M

∫ √−gTr(F 2 + (DΦ)2 + [Φi, Φj ]2 +
1

6
RΦ2) + fermions (3.4)

These scalars, and their gravity-side manifestation as collective coordinates for D3-branes,

will play a key role in our analysis. The commutator interaction among the scalar fields is

minimized by commuting matrices, i.e. eigenvalues φi
a, a = 1, . . .N of the Φi. In the case

of flat spacetime, this leads to a moduli space of scalar field VEVs, homogeneous along flat

spatial slices; otherwise generically the moduli space is only approximate. The off-diagonal

modes of the U(N) adjoint matrices (the “W bosons”) have masses

m2
W,iab ∼ gY M

∑

j 6=i

(φj
a − φj

b)
2 (3.5)

They all become light at the origin φi
a → 0.

Consider first this quantum field theory on (3.1). This is a CFT on a Friedmann-

Robertson-Walker background or “collapsing cone” with scale factor a(tp) = tp. For large

|tp|, H = ȧ
a ∼ 1/tp is small and the physics is smooth. For small |tp|, there is a sin-

gularity; Kaluza-Klein modes on the hyperboloid blueshift without bound and the ratio

mW /mKK ∝ |tp| goes to zero.

Next, let us analyze this system in the static frame (3.3). The conformal transforma-

tion acts on the scalar fields as

Φ = e−η/ℓΦp (3.6)

where Φ refers here to the field in the static conformal frame. Applying this to a diagonal

element of Φ, we see from (3.5) that in this frame mW → 0, as the scalar field reaches

the origin, while the KK mass is constant. Thus, both frames contain a regime of the

dynamics in which the dimensionless ratio mW /mKK ∝ |tp| goes to zero in this limit, and

these regimes should be identified.

In the static frame, the conformal coupling of the scalar field to the scalar curvature

R gives a negative mass squared to the scalars. The theory does not have a ground state.7

Nonetheless, the gauge theory is well defined. First, only a finite number of modes (and in

7 Of course, the theory on the collapsing cone does not have a unique vacuum either.
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some cases, only the zero modes [15]) of the scalars experience this instability. Secondly, it

takes an infinite time for these zero modes to roll down a −TrΦ2 potential to infinity. The

classical and quantum evolution is well defined for any initial state. Finally, the physics of

the scalars rolling off to infinity is equivalent to the scalars being constant at late time on

the expanding cone, a regime which is completely well behaved.

We deduce that in the static frame (3.3), the physics of the singularity of the metric

(3.1) corresponds to scalar fields rolling toward the origin Φ = 0 and scattering off a

quadratic potential barrier. Since both the collapsing cone metric and the conformal

transformation to the static frame that we used are singular, we will focus on the field

theory formulated in the static frame, and study the relationship between the spacetime

and the field theory pictures.

To begin with, let us consider gauge theory states at different energies E, and map

them to the corresponding family of backgrounds on the gravity side. For energies E > 0,

one can argue that the generic state of the field theory will be an excited gas of W-bosons

and Kaluza-Klein modes, with the scalars trapped for a long time at the origin. The

gravitational duals will be the M > 0 black holes. Negative energies corresponding to

M < 0 can be accessed by lowering the energy of the zero modes of the scalar fields; the

potential barrier due to the curvature energy means that the theory will be out on the

Coulomb branch. More generally, as noted in §2, we can create black holes at all energies,

by studying shells of N D3-branes wrapped along Σ, and distributed evenly over the S5.

Out on the Coulomb branch, the eigenvalues of Φ are naturally associated with the radial

positions of the dual D-branes.

We find a simple correspondence between the quantum corrections in the scalar field

theory and the causal structure in the gravitational duals. In the static frame, the eigen-

values for the scalar fields see an inverted harmonic oscillator potential. If the off-diagonal

modes are set to zero (so that the commutator term in (3.4) does not contribute), then

there are classical trajectories in which each eigenvalue φ of energy Eφ ∼ −φ2
0ℓ/g2

Y M

executes a motion

φ(t) = φ0 cosh[(η − η0)/ℓ] (3.7)

with φ bouncing off the inverted harmonic oscillator potential at a minimal value φ = φ0

when η = η0. With N eigenvalues moving in an SO(6) invariant configuration, this has

energy

E ∼ −Nφ2
0ℓ

g2
Y M

(3.8)
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Near the origin, the off-diagonal modes of the U(N) matrices become light, and gen-

erate quantum mechanical effects which drastically affect the evolution. At weak coupling

(λ ≪ 1), particle production of off-diagonal modes (“W bosons”) traps the field at φ = 0

[9,11]. The strength of this effect is controlled by

1

φ2
|dφ

dη
| ∼ 1

φ0ℓ
(3.9)

At strong ’tHooft coupling, the leading effect is the renormalization of the action due to

loops of W bosons, which sum up to the DBI action and slow and trap the field at φ = 0

[10]. The figure of merit for the importance of loop effects arising from the time dependence

in the rolling scalar background8 is
√

λ times (3.9):

√
λ

φ2
|dφ

dη
| ∼

√
λ

φ0ℓ
(3.10)

For sufficiently negative energy E the field bounces off the inverted harmonic oscillator

potential at a field value φ0 sufficiently large that these effects never become important.

The loop effects become important when the minimal field value is small enough that

(3.10) becomes ≥ 1, i.e. when φ0ℓ ≤
√

λ. Translating this into an energy scale using (3.8),

this implies E > −N2/ℓ. This energy scale is significant on the gravity side: from (2.9)

and the fact that ℓ2

G5

∼ N2

ℓ we see that it is parametrically the energy scale above which

there is a black hole horizon in the dual geometry. Therefore the field theory produces

nontrivial DBI corrections precisely in the regime where the classical gravity side exhibits

nontrivial causal structure.9

8 In the case of present interest, the field theory is not formulated on Minkowski space and

the DBI action in general also contains corrections arising from the curvature of the background

metric and from finite temperature effects.
9 In [16], the authors have argued that for Schwarzschild observers, the breakdown of the DBI

action of D-brane probes at the horizon coincides with the appearance of light states connecting

the probe and the hot Dp-branes. It would be interesting to see if a similar picture here led to

thermalization of a collapsing shell as it approached the horizon.
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(C)

V( φ)

φ

Eext

0

?

?

(A)

(B)

Fig. 2: Phases of the scalar field dynamics. The curve is the inverted harmonic

oscillator potential, the straight lines are the incoming scalar field trajectories at

various energies, and the dashed lines are the classical late time behavior (meant to

be at the same energy) without quantum corrections. Trajectory (A) corresponds

to a bouncing scalar. In trajectory (B), the scalar would bounce without quantum

corrections, but DBI corrections slow the scalar near the potential barrier and

quantum corrections become important. In trajectory (C), the scalar would sail

over the potential barrier without quantum corrections, but again DBI and other

quantum corrections become important near the origin.

In general, the dynamics of the scalar fields have a phase structure which matches

the different causal structures for the dual spacetimes, as seen in Figures 2 and 3. Let us

collect the above statements to make this clear. For E < −N2/ℓ, the scalar fields bounce

off of the potential before quantum effects are important. The dual spacetime has no

horizons, and we believe that the naked singularity is removed by the D-brane shell along

the lines of [17]. For −N2/ℓ < E < 0, the scalar field trajectories see strong quantum

corrections before they reach the potential barrier, roughly at the location of the horizon;

furthermore, the barrier prevents them from reaching the origin. The dual spacetimes are

black holes of Reissner-Nordstrom type, with inner and outer horizons cloaking timelike

singularities (although the inner horizon is unstable to forming a singularity). Finally, for

E > 0, the scalar field trajectory continues to be corrected when the scalars reach the

horizon; furthermore, there is no barrier preventing them from reaching the origin. In this

regime, the dual spacetimes are black holes with spacelike singularities.
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(C)

Λ < 0

Λ = 0

Timelike
boundary

origin

Λ < 0

Λ = 0

(B)(A)

Fig. 3: Causal structures of classical black holes formed by scalar trajectories

shown in the previous figure. For case (A), the brane bounces and the putative

naked singularity in (2.2) for E < Eext is screened. For (B) we are unsure of

the trajectory of the collapsing shell, and have shown the Reissner-Nordstrom-like

causal structure of the black holes (2.2) for 0 > E > Eext. For (C) the black holes

have spacelike singularities, and we have shown the diagram for a M = 0 black

hole.

The stalling of the system at small values of φ appears to be key to understanding

the resolution of the singularity and the description of the decay of the black holes (2.2).

There are many coupled features of the physics in this regime, which we will only partially

control. These include the loop effects discussed above, production of KK modes and

W bosons, the Casimir energy (which in general breaks hyperbolic symmetry [18]), the

dynamics of Wilson lines (both continuous and discrete), and the spreading of the wave

function for the scalars.

In the present work, we will largely focus on the CFT description of the process of

an observer propagating through the horizon. The first step at large λ is to take into

account the effects of the DBI action. This will lead us to a scheme for describing physics

inside the horizon, accessible before reaching the full complications of the singularity. In

particular, in order to analyze the dynamics of the scalar fields at strong coupling, we can

make use of the gravity side of the AdS/CFT correspondence in the regime where it is

effective (i.e. away from the singularity). Let us turn now to these issues. In §5, we will

explore the physics of the singularity and the fate of the black holes in light of its relation

to the dynamics of the Yang-Mills theory at the origin of moduli space.

4. How to look behind the horizon

For gauge theories with a gravitational dual, the theory on a static 4d spacetime at

finite temperature is taken to describe the experience of a “Schwarzschild” observer in the
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dual 5d static black hole spacetime. Classically, such an observer cannot see behind the

horizon. When the black hole is formed dynamically, unitarity requires that the experience

of infalling observers behind the horizon is measured by a Schwarzschild observer through

subtle correlations in the black hole’s Hawking radiation.10

The sections above give a prescription for describing observers such as D3-brane probes

falling through the horizon of M = 0 hyperbolic black holes: study the gauge theory dual

to the tp < 0 half of the Poincaré patch. How can we relate this to the experience of a

Schwarzschild observer? In this section, we give an answer for infalling D3-brane probes

wrapping the hyperbolic space Σ. The essential point is that one may promote the time

direction to a field variable of the D-brane action, which amounts to adding an additional

gauge invariance (invariance under worldvolume reparametrizations). The resulting DBI

effective action for the D3-brane probe is invariant under target space reparametrizations.

One can transform the theory from a description suited to different observers by simple

field redefinition. This answer generalizes readily to M 6= 0 black holes, and to black holes

with other horizon topologies, such as those with spherical or flat horizons which appear

in asymptotically AdS backgrounds.

We will start in §4.1 by describing the the DBI actions for D3-brane probes according

to both “infalling” and “Schwarzschild” observers, and constructing a probe action for

infalling observers which is dual to a non-singular gauge theory. In §4.2 we will discuss

the change of variables of the probe theory which transforms these actions into each other.

These maps take the form of a field-dependent reparametrization of the gauge theory time

variable. In §4.3 we will argue that these reparametrizations may arise from a change of

gauge in the underlying Yang-Mills theory.

4.1. The effective action for D3-brane probes

Consider a single D3-brane wrapping Σ = H3/Γ, with the worldvolume time set

equal to the Poincaré time and the position described by the radial direction in Poincaré

coordinates. The DBI action for this D3-brane probe is:

Sdbip =
V̂

gs(α′)2

∫

dtp

[

r3
pt

3
p

ℓ3

√

r2
p

ℓ2
− ℓ2

r2
p

ṙ2
p − r4

pt3p
ℓ4

]

. (4.1)

10 Different language describes the consequences of unitarity for “eternal” black holes, whose

field theory dual is a tensor product of two copies of the zero-temperature field theory [19,20,21,22],

coupled via a correlated “thermal” state.
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(Here V̂ is the volume of the compact hyperbolic space). Gauge-gravity duality tells us

that (4.1) arises from the Yang-Mills theory on the cosmological spacetime (3.1), with

one eigenvalue φp = m2
srp of the adjoint scalar taken far out along the Coulomb branch,

breaking U(N) → U(N − 1) × U(1); it is the effective action for this eigenvalue, which

arises from integrating out the massive W bosons with mass mW = φp. In particular, one

might have deduced this action by considering the AdS/CFT correspondence in Poincaré

coordinates, and performing the orbifold on that theory, truncating to zero modes after

the coordinates have been changed and the orbifold projection has been performed.

This action is well suited to describing an infalling observer (where the observer is our

D3-brane probe). The equation of motion for rp is:

4
r3
p

ℓ4
(

1

γp
− 1) +

3ṙpγp

tp
+

d

dtp
(ṙpγp) + 2

ṙ2
p

rp
γp = 0 (4.2)

where γp = 1/
√

1 − ℓ4ṙ2
p/r4

p. This has a constant-rp solution which describes a D3-brane

falling into the black hole, reaching the singularity at tp = 0, which is at finite time. The

second term here contains the effects of Hubble friction on the motion, following from the

homogeneity along the hyperbolic as opposed to flat spatial slices of the Poincaré slices of

AdS5. While DBI corrections may begin to become important near the horizon, it is easy

to check that fluctuations around this solution remain under control all the way through

the horizon. As we will discuss at the end of this section, it is useful to describe this

in a static conformal frame obtained by the conformal transformation (3.3) to the static

cylinder; this leads to a description of infalling observers related to the coordinates r̃, t̃

(2.11).

On the other hand, we also wish to describe an observer who remains outside of the

black hole, and so study the detailed implementation of black hole complementarity from

the field theory point of view. Furthermore, as stated in the introduction of this section,

past presentations of black holes are in terms of a gauge theory on a static background at

finite temperature, which describes Schwarzschild observers, and we would like to study

physics behind the horizons of these black holes as well.

Consider then a D3-brane wrapping Σ, with worldvolume time equated with

Schwarzschild time, and the position described by the radial position in Schwarzschild

14



coordinates. The DBI action describing the spacetime dynamics of this probe is11

Sdbis = − V̂

gs(α′)2

∫

dt

[

r3

√

f(r) − ṙ2

f
− (r4 − ℓ4)

ℓ

]

, (4.3)

Gauge-gravity duality tells us that this action arises from considering N = 4 U(N) Yang-

Mills theory on (3.3) at finite temperature, with one eigenvalue φ = m2
sr of the adjoint

scalar taken out onto the Coulomb branch, again breaking the U(N) gauge symmetry to

U(N − 1) × U(1). Sdbis is the effective action for this eigenvalue, arising from integrating

out the W-bosons (transforming in the fundamental of the unbroken U(N − 1)) with mass

mW = φ.

Near the horizon, the scalar field approaches its speed limit

ṙ2 → f(r)2, (4.4)

and the relativistic γ factor γ = 1/
√

1 − ṙ2/f2 approaches infinity. Therefore, the probe

takes an infinite Schwarzschild time to reach the horizon, as is clear from the time slicings

depicted in Figure 1b. Furthermore, perturbations about the background solution become

large near the horizon, for the following reason. Expand r ≡ r0(t) + δr about a spatially

homogeneous classical solution r0(t). The resulting effective action for the perturbations

δr, obtained by expanding the square-root action, has a quadratic term scaling like γ3,

cubic interactions scaling like γ5, and so on. Therefore the interactions among the pertur-

bations δr become strong as the brane approaches the horizon. This suggests that (4.3) is

not a good effective description near the horizon, and one should choose a different set of

variables to describe the probe dynamics.

Such variables are provided by our original Poincaré description. The reader may

worry that as we originally formulated it, the gauge theory dual which describes infalling

observers well lives on a singular spacetime. In fact, we can choose field theory variables

for the gauge theory on the static cylinder which sees behind the horizon, giving us the

best of both worlds. Furthermore, this set of fields will be most readily generalized to

other black holes.

11 The last term comes from
∫

A4 where A4 is the potential for the five-form flux. In

Schwarzschild coordinates, the potential which is nonsingular on the horizon is A4 ∝ (r4
−ℓ4)dt∧ǫ3

(where ǫ3 is the volume form on the hyperboloid). Starting with the form of A4 in Poincare coor-

dinates and applying the coordinate transformation (2.1) yields an expression for A4 which agrees

with this up to a term dA3 where A3 is finite on the horizon.
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These variables are just the tilded coordinates introduced at the end of §2. The DBI

action in the metric (2.12) is

S′
dbip = − V̂

gs(α′)2

∫

dt̃
r̃4

ℓ







√

1 − ℓ4

r̃4

(

dr̃

dt̃
+

r̃

ℓ

)2

− 1







(4.5)

Since (3.2),(3.3) map the collapsing cone to the static cylinder, this theory should also

arise from Yang-Mills on the non-singular static cylinder.

In these coordinates, the late-time solutions approach the speed limit

(

dr̃

dt̃
+

r̃

ℓ

)2

→ r̃4

ℓ4
(4.6)

In other words, all solutions asymptote to r̃ → r̃0e
−t̃/ℓ at late times t̃. In these variables,

the classical approximation breaks down at the singularity: as in (4.1), the evolution

through the horizon is smooth and classical. This should not surprise us: the transforma-

tion (2.11) reparametrizes the equal-time slices in Poincaré coordinates slice by slice, but

does not change the slicing. The upshot is that we can separate the problem of the space-

time singularity from the problem of studying Yang-Mills theory on a nonstatic, singular

spacetime.

The reader may also object that we have argued in §3 that the physics of the sin-

gularity is captured by the origin of moduli space, which the Schwarzschild coordinate

r(t) cannot classically reach. Black hole complementarity states that the Schwarzschild

observer should somehow be able to access the physics near the singularity, if only through

subtle correlations in the radiation emitted by the black hole. Moreover, it would be wor-

risome if a regime of field space was somehow excised. However, we believe that while the

classical D3-brane probe reaches the horizon only as t → ∞, these probes and the field the-

ory degrees of freedom which couple to them become strongly fluctuating in Schwarzchild

variables. Such fluctuations may extend to the origin of moduli space; but they will have

no classical spacetime interpretation. A Schwarzschild observer will see infalling objects

approach the horizon and thermalize.12

In §4.2, we will describe the transformation of the quantum variables of the low energy

effective action, which maps (4.1) to (4.3). However, the full Yang-Mills theory on the static

cylinder seems to produce two effective actions. On the one hand, the Schwarzschild DBI

12 It is possible that a story analogous to [16] pertains here.
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action (4.3) seems natural for a theory on the static cylinder at finite temperature, by

analogy with other black holes. On the other hand, since (3.2)(3.3) map the Yang-Mills

actions on (3.1),(3.3) into each other, it would appear that (4.5) should arise naturally from

the Yang-Mills theory. This is not a contradiction: the definitions of time in (4.3),(4.5)

differ for finite field values. Furthermore, the form of the effective action will depend on

the coordinates used on the space of eigenvalues, and on the choice of gauge used (since the

eigenvalues are not gauge-invariant objects). In §4.3 we will argue that that the difference

between (4.3) and (4.5) arises at least in part from the action of (3.2)(3.3) on the gauge

condition used to compute the DBI action.

4.2. Time reparameterizations in quantum mechanics

The basic idea behind the transformation of quantum variables describing the

Schwarzschild and infalling observers is simple. Beginning with either (4.1), (4.3), or

(4.5), one may promote the corresponding times tp, t to quantum variables tp(τ), t(τ) at

the price of introducing a gauge invariance – worldvolume reparametrizations – which must

be dealt with in the path integral. The resulting DBI action of a particle is written as:

S ∝
∫

dτ
√

−det Gµν∂τXµ∂τXν + SWZ , (4.7)

where SWZ is the “Wess-Zumino” coupling to background Ramond-Ramond fields. In

addition to the aforementioned gauge invariance, this action is also manifestly invariant

under target space coordinate transformations.13 In particular, (4.3) becomes:

Sdbisc = − V̂

gsℓ4
s

∫

dτ



r3

√

ft2,τ − r2
,τ

f
− (r4 − ℓ4)t,τ

ℓ



 (4.8)

and (4.5) becomes:

Sdbisc′ = − V̂

gsℓ4
s

∫

dτ



r̃3

√

r̃2

ℓ2
t̃2,τ − ℓ2

r̃2

(

r̃,τ +
r̃

ℓ
t̃,τ

)2

− r̃4t̃τ
ℓ



 (4.9)

The transformation between (4.8) and (4.9) is clear. Since (4.7) is invariant under

target space coordinate transformations, we need merely find the coordinate transformation

13 Up to boundary terms, which can be removed by gauge transformations of the Ramond-

Ramond fields.
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that relates the spacetime coordinates r, t to r̃, t̃, and promote these to field redefinitions.

These transformations are:

r̃ = r ; t̃ = t +
ℓ

2
ln

(

1 − ℓ2

r2

)

. (4.10)

In the covariant DBI action (4.7), this is just a (complicated) field redefinition. After

transforming the action, one may fix gauge again by selecting a time variable and setting

it equal to τ . In particular, (4.3) arises by writing (4.7) in the form (4.8) and setting t = τ ;

(4.5) arises by writing (4.7) in the form (4.9) and setting t̃ = τ .14

From the point of view of the gauged-fixed actions (4.3),(4.5), these transformations

look exotic. r, r̃ are quantum observables, so that the second equation in (4.10) appears

to be an operator-valued reparametrization of the time variable. On the other hand, in

theories with reparametrization invariance, this kind of transformation is common. For

example, when computing the density fluctuations which arise during inflation, one can

choose spatially flat equal-time slices and study quantum fluctuations of the inflaton; or

one may choose a gauge in which the inflaton fluctuations vanish and a scalar mode of the

spatial metric fluctuates. These are related by a field-dependent change of the equal-time

slicing.

Such field redefinitions and gauge transformations leave the physics invariant. In

practice, they will turn a simple correlation function in one set of variables into a correlation

function of very complicated operators in the other set of variables. The field redefinitions

and gauge transformations we perform will change which set of operators are natural to

study. Certain questions will be naturally answered in a frame for which the corresponding

fields are well described by a classical limit. For observers falling into the black hole, the

appropriate frame is realized by the Poincaré coordinates and associated DBI actions

(4.1)(4.5), which describe semiclassical evolution of a probe brane through the horizon.

There has been speculation that to follow an object falling through a black hole

horizon, one should evolve the probe with a new Hamiltonian in the gauge theory. This is

indeed what happens in the familiar case of crossing the Poincaré horizon by transforming

from Poincare to global coordinates. The Hamiltonian in the gauge theory on S3 × R is

14 Of course, (4.3) and (4.5) arise from a wrapped D3-brane, so that one must start with a

3+1-dimensional DBI action and fix the gauge for spatial reparametrizations as well; however,

since the spatial directions along Σ do not figure into our coordinate transformations, we will

ignore this step.
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related to the dilatation operator in Minkowski spacetime. However there is a key difference

between this and the case we are considering here: The choice of time on the boundary

changes when we transform Poincaré into global coordinates. In our present example, the

choice of time on the static cylinder does not change. The constant η surfaces on the

boundary can be extended inside the bulk spacetime either along constant t or constant t̃

time slices.

In the present case, despite the nontrivial change in bulk time slices, the Hamiltonians

in the frames (4.3),(4.5) are the same. To see this, we can use (4.8) and (4.9) to compute

the conjugate momenta. It is easy to show that:

pr̃ = pr −
ℓ

rf(r)
pt +

r4 − ℓ4

ℓ4rf(r)
V̂ N

pt̃ = pt +
V̂ N

ℓ
.

(4.11)

While the momenta conjugate to r, r̃ transform nontrivially into each other, pt and pt̃ are

equal up to an overall constant shift. Now upon choosing the gauge t = τ , −pt becomes

the Hamiltonian derived from (4.3); while choosing the gauge t̃ = τ , −pt̃ becomes the

Hamiltonian derived from (4.5). Eq. (4.11) shows that these Hamiltonians are the same

up to a constant which is unimportant for the field theory dynamics.

On the other hand, because pr and pr̃ do transform nontrivially, the functional form

of the Hamiltonians will be quite different in different frames. The reparametrization

invariance implies a nontrivial constraint on the canonical variables. This can be written

as a relation between the conjugate momentum pt and the variables pr, r. Using the fact

that pt is minus the Hamiltonian (in the gauge τ = t) we find:

H(pr, r) =
V̂

gs(α′)2



f(r)

√

(

gs(α′)2pr

V̂

)2

+
r6

f
− (r4 − ℓ4)

ℓ



 (4.12)

This can also be obtained by computing the Legendre transformation of (4.3) to find the

Hamiltonian directly. Similarly, using the fact that pt̃ is minus the Hamiltonian in the

gauge t̃ = τ , we find:

H(pr̃, r̃) =
V̂

gs(α′)2





r̃2

ℓ2

√

(

gs(α′)2pr̃

V̂

)2

+ ℓ2r̃4 − r̃

ℓ
pr̃ −

r̃4

ℓ



 (4.13)
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Note that the form of H in terms of the new canonical variables pr̃, r̃ is different. It

would be interesting to pursue these transformations further, for example by comparing

the evolution of wavepackets in each set of coordinates.

An important question is how these transformations lift to the full set of variables of

the underlying Yang-Mills theory. Since the non-abelian generalization of the DBI action is

not known beyond low orders in velocities, this may prove somewhat difficult. We now turn

to an alternate route to understanding the transformation of the full Yang-Mills theory.

4.3. Coordinate transformations vs. gauge transformations

The Yang-Mills actions on (3.3) and (3.1) are related by a conformal transformation.

The DBI action (4.1) transforms under this conformal transformation to (4.9) (with τ = t̃),

not to (4.3): one requires the additional field-dependent coordinate transformation (4.10)

to pass from (4.5) to (4.3).

On the other hand, the effective action (4.3) naturally captures thermalization in the

gauge theory, and it is clear that any calculation using a gauge, regulator, and background

field configuration which respects the time-reversal symmetry of the Yang-Mills theory

and of the thermal state cannot produce (4.5) as an effective action. For example, the

expansion in (ℓ/r̃)2 ∼ λ/(ℓφ̃)2 becomes a power series in ( ˙̃r + r̃
ℓ
)2 rather than ˙̃r

2
.

So either one of (4.3),(4.1) does not arise from the Yang-Mills theory on (3.3),(3.1)

respectively, or additional input is required to derive a particular form of the DBI action

as an effective action. An important input is the choice of U(N) gauge. The form of the

1PI effective action depends on the choice of gauge used to compute it – only the physical

quantities, computed from the 1PI action (for scattering amplitudes, this is the sum over

tree graphs contributing to a process), need be invariant.

In fact, the gauge-fixing term in background field gauge is not invariant under confor-

mally rescaling the metric. Consider the Yang-Mills theory on the cosmological spacetime

(3.1). We choose as background fields a vanishing gauge field, Aµ = 0, and a scalar field

profile Φ̄i (with i an index transforming as a 6 under the SO(6) R-symmetry) correspond-

ing to a brane at a fixed location on S5 and moving along the radial direction rp in the

M = 0 hyperbolic black hole spacetime. Consider the background field gauge condition15

Gp = ∇µ,(p)A(p)
µ + i

∑

i

[Φ̄i
p, δΦ

i
p] = 0 , (4.14)

15 See also [23]. To justify the last term, note that if we were to use T-duality on a D3-brane

at a point on T 6, this would become the standard Dµ

Ā
Aµ = 0 background field gauge condition,

where Ā is the background gauge field.
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where δΦi is the fluctuating part of Φi. Due to the covariant derivative, this gauge condition

is not invariant under Weyl transformations, so that:

Gp → e2t/ℓ

(

∇µAµ +
2

ℓ
At + i

∑

i

[Φ̄i, δΦi]

)

= e2t/ℓG̃ . (4.15)

Note that G̃ is not invariant under time reversal with respect to t̃; this makes this gauge

condition a plausible choice for deriving (4.5) as an effective action.

The possibility that (4.3),(4.5) arise from the same Yang-Mills actions computed in

different gauges is suggested by the related story for the action of special conformal trans-

formations on Yang-Mills theory in R4. The Yang-Mills theory is invariant under such

transformations. The DBI action for D3-brane probe in AdS is invariant under modified

special conformal transformations, in which one adds a field-dependent term to the trans-

formation of the coordinates [24]. This arises from pulling the spacetime isometry back to

the worldvolume fields of the D-brane. Such a modified transformation is not an invari-

ance of the underlying Yang-Mills action. However, the AdS/CFT correspondence states

that the DBI action should arise from the Yang-Mills theory out on the Coulomb branch,

after integrating out the W-bosons which become massive out on the Coulomb branch.

(This has been verified to leading order in the inverse distance along the Coulomb branch

[25,26].)

In [23], the authors pointed out that while the Yang-Mills action is indeed invariant

under the special conformal transformation without the field-dependent term, the gauge

fixing term for background field gauge is not invariant under special conformal transforma-

tions. In order to restore the gauge condition to its original form after a special conformal

transformation, a field-dependent gauge transformation is required. The authors checked

that to one loop, the combined action of the usual special conformal transformation and

the field-dependent gauge transformation on the low-energy effective action is equivalent

to the modified transformation of [24], and is indeed a symmetry of the effective action.

In §4.2 we introduced a gauge invariance – worldvolume reparametrization invariance –

and showed that the experience of different observers was related by a combination of field

redefinition and change of how this gauge freedom was fixed. Here we have argued that

these descriptions can also be related by changing the U(N) gauge fixing condition. If our

suggestion holds, there is a nontrivial relationship between the U(N) gauge invariance and

probe worldvolume plus spacetime diffeomorphisms. It would be very interesting to study

this further.
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5. Comments about the singularity

We have seen that the hyperbolic black hole (2.2) has an equivalent description in

terms of the Poincare patch. For describing evolution across the horizon, the latter de-

scription is clearly preferable since the natural time slices cross the horizon smoothly.

Furthermore, a conformal transformation of this theory to the static cylinder removes the

singularity in the boundary spacetime and replaces it with the physics of the scalars near

the origin. In particular, the action (4.5) allows us to follow D-brane probes all the way

to the singularity, at φ = 0. Although we cannot control all aspects of the physics in this

regime, we can make the following qualitative comments.

On the static cylinder, the scalars experience a −TrΦ2 potential due to the negative

curvature. Naively, it would appear that one could send in an eigenvalue with large positive

energy and it would sail over the top of the potential. From the bulk standpoint, this

would correspond to a D-brane entering the black hole, crashing through the singularity

and reemerging to the future. This striking conclusion is not correct. As we have discussed,

there are various effects which can slow the evolution of the scalar near the origin.

Consider first the formation of the black hole by a collapsing shell of D3-branes.

Initially, the SYM scalars are diagonal, with the eigenvalues coming in from infinity. The

off diagonal modes (W-bosons) are very massive and start in their ground state. As the

eigenvalues approach zero, the off diagonal modes become light and are copiously produced,

leading to a complicated, strongly coupled, excited state. From the bulk standpoint, as

the shell of D3-branes becomes smaller, open strings are excited. A brane cannot return

to large radius unless the open strings attached to it decay. This traps the eigenvalues

near zero. If N is strictly infinite, the eigenvalues will be trapped forever. This provides a

microscopic description of the formation of a classical black hole. We expect that a similar

story will describe a D-brane probe that is sent in later: as it approaches the origin of

moduli space, it will start to excite W-bosons and other modes, and be trapped by them,

by an effect similar to the scattering of D0-branes at small impact parameter [9].

Consider a probe brane at constant rp. In the conformally transformed action, the

scalar satisfies φ = ke−t̃/ℓ. (This is an exact solution to the DBI action (4.5).) Since the

mass of the W-boson is proportional to φ, it will be produced when

|φ̇|
φ2

∼ 1 (5.1)
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This implies that φ ∼ 1/ℓ. The bulk radial coordinate is related to φ by r̃ = ℓ2
sφ ∼ ℓ2

s/ℓ.

So the W-bosons are produced well inside the horizon. This is consistent with the fact

that infalling observers do not see thermal radiation near the horizon.

If N is large but finite, the eigenvalues will be trapped for a long time, but eventually

come out, and the black hole will eventually decay. We can estimate the time scale over

which this occurs, in Schwarzschild coordinates. Consider the µ = 0 black hole. The gauge

theory on the static spacetime Σ × R is at finite temperature, T = 1
2πℓ . The dynamics of

a single brane is described by the action (4.3). The static potential starts from V = 0 at

the horizon, rises to a peak, and falls off as −r2 at large r. We will assume the D-branes

start near the horizon; if we form the black hole by a collapsing shell, the D-branes will

slow down and strongly fluctuate at this point, so that the state of the dual scalars should

have appreciable support near the horizon. For an M = 0 black hole, the only scale in the

integrand of (4.3) is ℓ, so that the D-brane action scales as:

S =
ℓ4

gs(α′)2
C = NC (5.2)

where C is a constant of order 1.16 Therefore, we expect that the timescale for emitting

a single brane is of order eCN , and the time scale for emitting all N branes is of order

NeCN . This gives a semiclassical process for the black hole to radiate away its charge. The

time scale is much longer than the evaporation time for a black hole in asymptotically flat

space or for a “small” ten-dimensional black hole in global AdS; on the other hand, it is

much shorter than the Poincaré recurrence time for a spherical black hole. The hyperbolic

black hole has positive specific heat; without the ability to radiate away D-branes, the

black hole would come into thermal equilibrium with its own Hawking radiation and not

evaporate, as with planar black holes or large spherical black holes in AdS. The ability

to radiate D-branes means that at late time, the black hole will decay (along with the

cosmological constant). Since it takes an infinite time for the branes to reach infinity, the

asymptotic geometry remains AdS5 × S5. The late time behavior is best described by

conformally transforming the static cylinder to the expanding cone. In this frame, the

scalar eigenvalues are constant (since the outgoing D-branes stay at constant Poincare

radius) and the excess energy redshifts to zero.

In previous discussions of the black hole information puzzle, it has often been suggested

that violations of locality might occur inside the horizon. In our example, this is clearly

16 For µ > 0, C will be replaced by a function C(r+/ℓ), where r+ is the horizon radius.
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happening near the singularity. Away from the singularity, local position on a constant-t̃

time slice is well defined since it corresponds to the position of the D-branes or the size

of the scalar eigenvalues. However, as we have seen, near the singularity all off-diagonal

elements of the scalar matrix become important, all of the eigenvalues interact strongly

with these modes and with each other, the D-brane “probes” are no longer good definitions

of any geometry, and we expect any notion of geometry to break down. This provides a

mechanism for information to come out of the black hole.

What is the best description of the causal structure of the final semi-classical space-

time? It is not just a smoothing out of the spacetime near the singularity with the region

outside the horizon unchanged. If that were the case, asymptotic observers who see the

shell collapse would not see any branes emerge. The branes would all end up in the second

copy of the black hole geometry to the future of the singularity. Since the branes come out

in finite time as seen by asymptotic observers, there are two possible Penrose diagrams (see

Fig. 4). The figure on the left describes the standard picture of an evaporating black hole

in AdS. Since it is clear from the gauge theory that the evolution enters a nongeometric

phase (when all the nonabelian degrees of freedom are excited) and there is no loss of

unitarity, we think the figure on the right is a more accurate description of the spacetime.

The notion of an event horizon clearly requires global causal relations which are not well

defined in a spacetime with nongeometric regions. Thus a global event horizon is only

well defined in the classical limit and does not have a meaningful quantum analog17. More

local concepts such as trapped surfaces and apparent horizons will remain meaningful away

from the regions of large curvature.

Even though the singularity is resolved in our model, it is not a simple bounce. It

takes a long time to pass through the singular region. If a similar picture applied to cos-

mological singularities, it would have an important implication. It is usually assumed that

superhorizon size perturbations propagate unaffected through a bounce. This is because

the bounce is assumed to happen quickly at one moment of time, so causality prevents

any effects on large scale. This is not the case in our model. Due to the long time delay,

there is no causality constraint. Indeed, we expect the W-bosons to eventually decay into

inhomogeneous modes and change the spectrum of perturbations.

17 The idea that event horizons may only exist in the classical limit has been discussed before

[27] using a different approach to quantum gravity.
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region
nongeometric

Fig. 4: The diagram on the left is the standard picture of an evaporating black hole

in AdS. We believe the diagram on the right is a better description of the physics

since it is clear from the gauge theory that the evolution enters a nongeometric

phase and remains unitarity.

6. Generalizations and open questions

We have focussed on a particularly simple model of a black hole which is locally AdS5

and used a “dual” description in terms of Poincare coordinates to show how to describe

physics inside the horizon. However the basic mechanism for going inside the horizon is

much more general. Consider any black hole in AdS. It can have arbitrary mass, and

spherical, planar, or hyperbolic horizon. The usual Schwarzschild coordinates go bad at

the horizon since the coordinate t associated with time translations diverges there. One

can introduce a good time coordinate associated with constant time surfaces that cross the

horizon by a simple shift: t̃ = t + g(r) for some function g(r). To study the motion of an

infalling D3-brane one uses the fact that the radial position of the D-brane is associated

with the eigenvalue of the super Yang-Mills scalars. The shift to a good time coordinate

in the bulk thus corresponds to a field dependent time reparamaterization in the gauge

theory. We can also follow D-branes falling into a rotating black hole in AdS. In this case,

good coordinates across the horizon are given by ϕ̃ = ϕ + h(r) as well as t̃ = t + g(r) for

suitable functions g, h. In terms of the dual field theory, both the time and one of the

angular variables must undergo field-dependent reparametrizations.

There are many directions for further work. One is to extend our proposal for infalling

D-branes to a complete description of the physics inside the horizon in terms of the dual

gauge theory. In the simple case of the hyperbolic black hole (with µ = 0) that we have

discussed for most of this paper, this is achieved by going to the Poincare patch description

and using the gauge theory on the collapsing cone. But for a general black hole it is not

clear what the analogous statement would be. It is possible that this is related to the
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discussion at the end of section 4, concerning the possible connection between our time

reparameterization and Yang-Mills gauge transformations.

A second major open question is to gain better control over the singularity. The issue

is no longer that our physical theory is breaking down near the singularity; it is clear

that evolution in the gauge theory will continue for all time. The point is simply that the

dynamics involves all the light degrees of freedom in a complicated way. We believe that

our general picture of the singularity will be applicable for all AdS black holes, but the

details will differ. For example, when strings propagate on negatively curved spacetimes

of decreasing volume, it has been shown that there are many new light degrees of freedom

[14], whereas this is not the case for positive curvature. For the hyperbolic black holes,

compactifying the hyperbola (as we have done) leads to various complications such as

introducing Wilson lines and a nonzero Casimir energy which can break the hyperbolic

symmetry. Perhaps a first step toward understanding the physics near the singularity

in this case is to consider the uncompactified theory. One question which arises is the

following. The breakdown of the DBI action in Schwarzschild coordinates corresponds to

thermalization related to the presence of the horizon. The breakdown of the DBI action in

coordinates t̃, r̃ occurs near the singularity. We expect a qualitative difference in the gauge

theory between the physics of horizons (thermalization) and that of singularities, since

the spacetime near the horizon is weakly curved and classical, while the spacetime near

the singularity is strongly curved and the classical approximation is truly breaking down.

It would be interesting to find a way to characterize the distinction using our effective

actions.18

A third question is to better understand the M < 0 black holes from the gauge theory.

These have rich causal structures, with multiple asymptotic regions, and inner and outer

horizons (which degenerate in the extremal limit). While the singularities appear timelike,

the inner horizon is unstable to perturbations which generate initially null singularities

that turn over and become spacelike. One possible attack on this class of black holes is to

study near-extremal black holes, using deviation from extremality as a small parameter.

More general questions are what the collapsing-shell spacetimes look like, and whether

there is a presentation of the gauge theory that reaches all of the asymptotic regions as

well as the interiors, or whether this is somehow cut off by the instability of the inner

horizon. Another interesting regime is for M very small and negative; in this case, while

18 We would like to thank S. Shenker for discussions on this point.
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the gauge theory dynamics should not differ significantly from the M = 0 case, the causal

structure of the black holes at these energies is naively very different.
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