178 research outputs found

    Time Domain Studies of X-ray Shot Noise in Cygnus X-1

    Full text link
    We investigate the variability of Cygnus X-1 in the context of shot moise models, and employ a peak detection algorithm to select individual shots. For a long observation of the low, hard state, the distribution of time intervals between shots is found to be consistent with a purely random process, contrary to previous claims in the literature. The detected shots are fit to several model templates and found to have a broad range of shapes. The fitted shots have a distribution of timescales from below 10 milliseconds to above 1 second. The coherence of the cross spectrum of light curves of these data in different energy bands is also studied. The observed high coherence implies that the transfer function between low and high energy variability is uniform. The uniformity of the tranfer function implies that the observed distribution of shot widths cannot have been acquired through Compton scattering. Our results in combination with other results in the literature suggest that shot luminosities are correlated with one another. We discuss how our experimental methodology relates to non-linear models of variability.Comment: Accepted for publication in Astrophysical Journal on July 16, 200

    Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    Get PDF
    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds

    Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    Full text link
    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than ~ 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.Comment: 17 pages text, 7 figures in main body, 5 Appendix figure

    Long-Term Trends in Phytoplankton Chlorophyll a and Size Structure in the Benguela Upwelling System

    Get PDF
    This is the final version. Available from American Geophysical Union (AGU) via the DOI in this record.The Benguela Upwelling System (BUS) is among the most productive ecosystems globally, supporting numerous fisheries and ecosystem services in Southern Africa. Sea-viewing Wide Field-of-view Sensor and Moderate-resolution Imaging Spectroradiometer-Aqua chlorophyll a (Chla) concentrations between September 1997 and February 2018 were used to investigate long-term trends in phytoplankton biomass and size structure (microphytoplankton [>20 Όm], nanophytoplankton [2–20 Όm], and picophytoplankton [<2 Όm]) in the Northern Benguela, Southern Benguela (SB), and Agulhas Bank (AB) shelf and open ocean regions of the BUS. Trends in upwelling and correlations with Chla and size structure were examined. Increasing Chla and microphytoplankton trends occurred in the Northern Benguela shelf and open ocean, while decreases were evident on the SB shelf in all seasons. In the SB open ocean, small increases occurred during austral winter, with a decrease in spring. On the AB shelf, increases in Chla and microphytoplankton occurred in summer with decreases during the other seasons. Patterns differed in the AB open ocean, with increases in winter and spring and decreases in summer and autumn. Although R 2 values indicated that linear trends accounted for a reasonable portion of the variance, and most trends were statistically significant, they showed only small changes on the shelf domains and little to no change in the open ocean. Strong correlations between upwelling, Chla, and the size classes were observed, but distinct seasonal differences occurred in each region. This is the first 20-year analysis of phytoplankton biomass and community structure in the BUS and provides a baseline against which future changes can be monitored.NERC National Centre for Earth ObservationSouth African National Research Foundation (NRF)South African Department of Environmental Affair

    Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic Ray Transport

    Full text link
    The physical processes involved in diffusion of Galactic cosmic rays in the interstellar medium are addressed. We study the possibility that the nonlinear MHD cascade sets the power-law spectrum of turbulence which scatters charged energetic particles. We find that the dissipation of waves due to the resonant interaction with cosmic ray particles may terminate the Kraichnan-type cascade below wavelengths 10^13 cm. The effect of this wave dissipation has been incorporated in the GALPROP numerical propagation code in order to asses the impact on measurable astrophysical data. The energy-dependence of the cosmic-ray diffusion coefficient found in the resulting self-consistent model may explain the peaks in the secondary to primary nuclei ratios observed at about 1 GeV/nucleon.Comment: 15 pages, 20 figures, 1 table, emulateapj.cls; To be published in ApJ 10 May 2006, v.64
    • 

    corecore