17 research outputs found

    A Hard X-Ray View of Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113

    Get PDF
    TeV blazars are known as prominent nonthermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV bands. If distant, absorption of gamma-ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in 2006 May and July, respectively, including a quasi-simultaneous coverage with the state-of-the-art Cerenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band and set in context to their historical behavior. During our campaign, we did not detect any significant X-ray or gamma-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point (~30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the gamma-ray absorption in the EBL.Comment: 9 pages, 10 figure

    Upper Bound on the First Star Formation History

    Full text link
    Our understanding of the nature of the extragalactic background light (EBL) has improved with the recent development of gamma-ray observation techniques. An open subject in the context of the EBL is the reionization epoch, which is an important probe of the formation history of first stars, the so-called Population III (Pop III) stars. Although the mechanisms for the formation of Pop III stars are rather well understood on theoretical grounds, their formation history is still veiled in mystery because of their faintness. To shed light into this matter, we study jointly the gamma-ray opacity of distant objects and the reionization constraints from studies of intergalactic gas. By combining these studies, we obtain a sensitive upper bound on the Pop III star formation rate density as ρ˙(z)<0.01[(1+z)/(1+7.0)]3.4(fesc/0.2)1(C/3.0) Myr1 Mpc3\dot\rho_{*}(z)<0.01[(1+z)/{(1+7.0)}]^{3.4}({f_{\rm esc}}/{0.2})^{-1}({C}/{3.0})\ {\rm M}_{\odot} {\rm yr}^{-1}\ {\rm Mpc}^{-3} at z7z\ge7, where fescf_{\rm esc} and CC are the escape fraction of ionizing photons from galaxies and the clumping factor of the intergalactic hydrogen gas. This limit is a 10\sim10 times tighter constraint compared with previous studies that take into account gamma-ray opacity constraints only. Even if we do not include the current gamma-ray constraints, the results do not change. This is because the detected gamma-ray sources are still at z4.35z\le4.35 where the reionization has already finished.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    On the Radio and Optical Luminosity Evolution of Quasars

    Get PDF
    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multivariate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data set truncated due to observational biases. It is found that the population of quasars exhibits strong positive correlation between the radio and optical luminosities. With this correlation, whether intrinsic or observationally induced accounted for, we find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution for the range of R values considered. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio quiet and very radio loud quasars, but rather a smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources in the considered sample.Comment: 15 pages, 15 figures, accepted to ApJ, updated to in press versio

    Prospects for future very high-energy gamma-ray sky survey: impact of secondary gamma rays

    Full text link
    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z8z\sim8 assuming the intergalactic magnetic field (IGMF) strength B=1017B=10^{-17} G and an unbiased all sky survey with 0.5 hr exposure at each Field of View, where total observing time is 540\sim540 hr. These numbers will be 79, 96, 110, 63, and 6 up to z5z\sim5 in the case of B=1015B=10^{-15} G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.Comment: 8 pages, 3 figures, accepted for publication in Astroparticle Physic

    Fermi-LAT Detection of a Break in the Gamma-Ray Spectrum of the Supernova Remnant Cassiopeia A

    Full text link
    We report on observations of the supernova remnant Cassiopeia A in the energy range from 100 MeV to 100 GeV using 44 months of observations from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. We perform a detailed spectral analysis of this source and report on a low-energy break in the spectrum at 1.720.89+1.351.72^{+1.35}_{-0.89} GeV. By comparing the results with models for the gamma-ray emission, we find that hadronic emission is preferred for the GeV energy range.Comment: 18 pages, 5 figures, 2 tables, to be published in Ap

    Gravitomagnetism and spinor quantum mechanics

    Full text link
    We give a systematic treatment of a spin 1/2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of which has recently been experimentally verified. Our main interest is the coupling of the orbital and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the gravitational gyromagnetic ratio as gsubg=1 ; this is to be compared with the electromagnetic gyromagnetic ratio of gsube=2 for a Dirac electron.Comment: 12 pages, 1 figur
    corecore