To be submitted to Astrophysical Journal - Not Yet Refereed

¹ Bright AGN Source List from the First Three Months of the *Fermi* Large Area ² Telescope All-Sky Survey

A. A. Abdo^{1,2}, M. Ackermann³, M. Ajello³, W. B. Atwood⁴, M. Axelsson^{5,6}, L. Baldini⁷, 3 J. Ballet⁸, G. Barbiellini^{9,10}, D. Bastieri^{11,12}, B. M. Baughman¹³, K. Bechtol³, R. Bellazzini⁷, 4 R. D. Blandford³, E. D. Bloom³, E. Bonamente^{14,15}, A. W. Borgland³, J. Bregeon⁷, A. Brez⁷, 5 M. Brigida^{16,17}, P. Bruel¹⁸, T. H. Burnett¹⁹, G. A. Caliandro^{16,17}, R. A. Cameron³, 6 P. A. Caraveo²⁰, J. M. Casandjian⁸, E. Cavazzuti²¹, C. Cecchi^{14,15}, E. Charles³, 7 A. Chekhtman^{22,2}, A. W. Chen²⁰, C. C. Cheung²³, J. Chiang³, S. Ciprini^{14,15}, R. Claus³, 8 J. Cohen-Tanugi²⁴, S. Colafrancesco²¹, W. Collmar²⁵, J. Conrad^{5,26,27}, L. Costamante³, 9 ¹⁰ S. Cutini²¹, C. D. Dermer², A. de Angelis²⁸, F. de Palma^{16,17}, S. W. Digel³, E. do Couto e Silva³, P. S. Drell³, R. Dubois³, D. Dumora^{29,30}, C. Farnier²⁴, C. Favuzzi^{16,17}, S. J. Fegan¹⁸, 11 E. C. Ferrara²³, J. Finke^{1,2}, W. B. Focke³, L. Foschini³¹, M. Frailis²⁸, L. Fuhrmann³², 12 Y. Fukazawa³³, S. Funk³, P. Fusco^{16,17}, F. Gargano¹⁷, D. Gasparrini²¹, N. Gehrels^{23,34}, 13 S. Germani^{14,15}, B. Giebels¹⁸, N. Giglietto^{16,17}, P. Giommi²¹, F. Giordano^{16,17}, M. Giroletti³⁵ 14 T. Glanzman³, G. Godfrey³, I. A. Grenier⁸, M.-H. Grondin^{29,30}, J. E. Grove², L. Guillemot^{29,30}, 15 S. Guiriec²⁴, Y. Hanabata³³, A. K. Harding²³, R. C. Hartman²³, M. Hayashida³, E. Hays²³, 16 S. E. Healey³, D. Horan¹⁸, G. Jóhannesson³, R. P. Johnson⁴, T. J. Johnson^{23,34}, W. N. Johnson², 17 M. Kadler^{36,37,38,39}, T. Kamae³, H. Katagiri³³, J. Kataoka⁴⁰, M. Kerr¹⁹, J. Knödlseder⁴¹, 18 M. L. Kocian³, F. Kuehn¹³, M. Kuss⁷, J. Lande³, L. Latronico⁷, M. Lemoine-Goumard^{29,30}, 19 F. Longo^{9,10}, F. Loparco^{16,17}, B. Lott^{29,30,*}, M. N. Lovellette², P. Lubrano^{14,15}, G. M. Madejski³, 20 A. Makeev^{22,2}, M. N. Mazziotta¹⁷, W. McConville²³, J. E. McEnery²³, C. Meurer^{5,27}, 21 P. F. Michelson³, W. Mitthumsiri³, T. Mizuno³³, A. A. Moiseev³⁷, C. Monte^{16,17}, 22 M. E. Monzani³, A. Morselli⁴², I. V. Moskalenko³, S. Murgia³, P. L. Nolan³, J. P. Norris⁴³, 23 E. Nuss²⁴, T. Ohsugi³³, N. Omodei⁷, E. Orlando²⁵, J. F. Ormes⁴³, D. Paneque³, J. H. Panetta³, 24 D. Parent^{29,30}, V. Pelassa²⁴, M. Pepe^{14,15}, M. Pesce-Rollins⁷, F. Piron²⁴, T. A. Porter⁴, 25 S. Raino^{16,17}, R. Rando^{11,12}, M. Razzano⁷, S. Razzaque^{1,2}, A. Reimer³, O. Reimer³, 26 T. Reposeur^{29,30}, L. C. Reyes⁴⁴, S. Ritz^{23,34}, A. Y. Rodriguez⁴⁵, R. W. Romani³, F. Ryde^{5,26}, 27 H. F.-W. Sadrozinski⁴, D. Sanchez¹⁸, A. Sander¹³, P. M. Saz Parkinson⁴, J. D. Scargle⁴⁶, 28 T. L. Schalk⁴, A. Sellerholm^{5,27}, C. Sgrò⁷, M. Shaw³, D. A. Smith^{29,30}, P. D. Smith¹³, 29 G. Spandre⁷, P. Spinelli^{16,17}, J.-L. Starck⁸, M. S. Strickman², D. J. Suson⁴⁷, H. Tajima³ 30 H. Takahashi³³, T. Takahashi⁴⁸, T. Tanaka³, G. B. Taylor⁴⁹, J. B. Thayer³, J. G. Thayer³, 31 D. J. Thompson²³, L. Tibaldo^{11,12}, D. F. Torres^{50,45}, G. Tosti^{14,15,*}, A. Tramacere^{51,3}, 32 Y. Uchiyama³, T. L. Usher³, N. Vilchez⁴¹, M. Villata⁵², V. Vitale^{42,53}, A. P. Waite³, 33 B. L. Winer¹³, K. S. Wood², T. Ylinen^{54,5,26}, M. Ziegler⁴ 34

³.W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305

⁴. Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064

^{5.}The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm, Sweden

⁶.Stockholm Observatory, Albanova, SE-106 91 Stockholm, Sweden

⁷ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy

 8 Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d'Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France

⁹. Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy

^{10.}Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

^{11.}Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

^{12.}Dipartimento di Fisica "G. Galilei", Università di Padova, I-35131 Padova, Italy

¹³.Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210

¹⁴. Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy

¹⁵. Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy

^{16.}Dipartimento di Fisica "M. Merlin" dell'Università e del Politecnico di Bari, I-70126 Bari, Italy

^{17.}Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy

^{18.}Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau, France

^{19.} Department of Physics, University of Washington, Seattle, WA 98195-1560

^{20.} INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy

^{21.} Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma), Italy

^{22.}George Mason University, Fairfax, VA 22030

^{23.}NASA Goddard Space Flight Center, Greenbelt, MD 20771

²⁴·Laboratoire de Physique Théorique et Astroparticules, Université Montpellier 2, CNRS/IN2P3, Montpellier, France

^{25.}Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

²⁶. Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm, Sweden

^{27.}Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

 $^{28.}$ Dipartimento di Fisica, Università di Udine and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Gruppo Collegato di Udine, I-33100 Udine, Italy

^{29.} CNRS/IN2P3, Centre d'Études Nucléaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175, France

¹ National Research Council Research Associate

² Space Science Division, Naval Research Laboratory, Washington, DC 20375

ABSTRACT

36

35

The first three months of sky-survey operation with the *Fermi Gamma Ray Space Telescope (Fermi)* Large Area Telescope (LAT) reveals 132 bright sources at $|\mathbf{b}| > 10^{\circ}$ with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright

^{49.}University of New Mexico, MSC07 4220, Albuquerque, NM 87131

^{30.} Université de Bordeaux, Centre d'Études Nucléaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175, France

^{31.}INAF-IASF Bologna, 40129 Bologna, Italy

^{32.}Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

 $^{^{33.} \}mathrm{Department}$ of Physical Science and Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

³⁴. University of Maryland, College Park, MD 20742

 $^{^{35.} \}mathrm{INAF}$ Istituto di Radioastronomia, 40129 Bologna, Italy

^{36.}Dr. Remeis-Sternwarte Bamberg, Sternwartstrasse 7, D-96049 Bamberg, Germany

 $^{^{37.} \}mathrm{Center}$ for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771

^{38.}Erlangen Centre for Astroparticle Physics, D-91058 Erlangen, Germany

^{39.}Universities Space Research Association (USRA), Columbia, MD 21044

^{40.}Department of Physics, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551, Japan

^{41.}Centre d'Étude Spatiale des Rayonnements, CNRS/UPS, BP 44346, F-30128 Toulouse Cedex 4, France

^{42.}Istituto Nazionale di Fisica Nucleare, Sezione di Roma "Tor Vergata", I-00133 Roma, Italy

^{43.}Department of Physics and Astronomy, University of Denver, Denver, CO 80208

⁴⁴.Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637

^{45.}Institut de Ciencies de l'Espai (IEEC-CSIC), Campus UAB, 08193 Barcelona, Spain

⁴⁶. Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

⁴⁷. Department of Chemistry and Physics, Purdue University Calumet, Hammond, IN 46323-2094

⁴⁸. Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan

^{50.}Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

^{51.}Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy

^{52.}INAF, Osservatorio Astronomico di Torino, I-10025 Pino Torinese (TO), Italy

^{53.}Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Roma, Italy

⁵⁴. School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden

^{*}Corresponding authors: B. Lott, lott@cenbg.in2p3.fr; G. Tosti, tosti@pg.infn.it

AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 57 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 5 blazars with uncertain classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy peaked BL Lacs (HBLs), sources which were so far hard to detect in the GeV range. Another 10 lower-confidence associations are found. Only thirty three of the sources, plus two at $|\mathbf{b}| < 10^{\circ}$, were previously detected with *EGRET*, probably due to the variable nature of these sources. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N - log S and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BLLacs. The contribution of LAT-blazars to the total extragalactic γ -ray intensity is estimated.

Subject headings: gamma rays: observations — galaxies: active — galaxies: jets — BL
 Lacertae objects: general

39

1. Introduction

The Gamma ray Large Area Space Telescope (GLAST) was launched on 11 June 2008, and re-⁴¹ named the Fermi Gamma Ray Space Telescope shortly after entering its scientific operating mission, ⁴² which began on 11 August, 2008. The Large Area Telescope (LAT) on Fermi provides an increase ⁴³ in sensitivity by more than an order-of-magnitude over its predecessor EGRET, the Energetic ⁴⁴ Gamma Ray Experiment Telescope on the Compton Gamma Ray Observatory (Thompson et al. ⁴⁵ 1993), and the Italian Space Agency Satellite AGILE (Astro-rivelatore Gamma a Immagini Leg-⁴⁶ gero; Tavani et al. 2008). In sky survey mode, the LAT observes all parts of the sky every 3 hours, ⁴⁷ providing effectively uniform exposure on longer timescales.

One of the major scientific goals of the *Fermi Gamma Ray Space Telescope* is to provide new 49 data about γ -ray activity of AGNs. Rapidly varying fluxes and large luminosities of extragalactic 50 γ -ray sources are best explained if the γ rays are emitted from collimated jets of charged particles 51 moving at relativistic speeds (Blandford & Rees 1978; Maraschi et al. 1992). *Fermi*-LAT observa-52 tions will help determine how these particles are accelerated, where the gamma rays are emitted, 53 what the energy and power budgets of the supermassive black-hole engines are, what this says for 54 the fueling and growth of black holes, and the reasons for the differences between radio-loud and 55 radio-quiet AGNs, and FSRQs and BL Lac objects. These are just a few of the questions that 56 γ -ray AGN studies with the *Fermi*-LAT are helping to answer (see Atwood et al. 2009, for more 57 discussion of these goals).

In a companion publication (Abdo et al. 2009c), 132 bright sources at $|b| > 10^{\circ}$ with test

statistic (TS) > 100 are found in the preliminary three month *Fermi* all-sky survey. As expected from the EGRET legacy, a large fraction of these sources are AGNs. Detailed results of the subset of the *Fermi* bright source list that are associated with AGNs are presented here.

Sixty-six high-confidence blazars are listed in the Third *EGRET* catalog of high-energy gamma-63 ray sources (3EG catalog; Hartman et al. 1999), with the majority of them, $\approx 77\%$, identified 64 as flat spectrum radio quasars (FSRQs), and the remaining $\approx 23\%$ identified as belonging to 65 the BL Lac class.¹ The recently released catalog of high-confidence *AGILE* gamma-ray sources² 66 (Pittori et al. 2008) shows a somewhat higher percentage of BL Lacs. Unlike AGN surveys at 67 optical or X-ray energies, in which the majority of AGNs are radio quiet (e.g., della Ceca et al. 68 1994; Ivezić et al. 2002), all AGNs detected at $\gtrsim 100$ MeV energies are also significant radio sources. 69 This includes the 3EG and *AGILE* blazars, which are so far identified with flat spectrum (radio 70 spectral index $\alpha_r > -0.5$ at GHz frequencies) radio-loud AGNs, and most show superluminal 71 motion (Jorstad et al. 2001; Kellermann et al. 2004). Moreover, the redshift distribution is broad, 72 with the largest redshift AGN known in the 3EG catalog at z = 2.286.

Here we present a source list of bright AGNs found in the set of the 132 bright LAT sources at 74 $|b| > 10^{\circ}$. Identification of variable γ -ray sources with blazars depends on the statistical likelihood 75 of positional association and correlated variability of the γ -ray emissions with lower-frequency 76 radiations (e.g. Sowards-Emmerd et al. 2003). The 106 sources having high-confidence associations 77 with known blazars and radio-galaxies constitute the LAT Bright AGN Sample (LBAS). Included in 78 this list are mean fluxes, weekly peak fluxes, spectral indices, locations, and variability information. 79 Only sources with confidence levels greater than 10σ are retained in the LBAS. This list is not, 80 however, complete, as we already know of many more sources at lower significance. The limiting 81 flux depends on both the source sky location and the spectral hardness.

In Section 2, observations with the LAT, analysis methods, and the source detection procedure are presented. Section 3 describes the association method and gives the list of bright *Fermi*-LAT detected blazars. Key properties of the LBAS, including flux and spectral index, are presented to so the radio/gamma-ray connection. Population studies, including source types and redshifts, are presented in Section 7, where the log N - log S flux distributions and luminosity functions of the LBAS are constructed. The results are discussed in Section 8, including implications of the results of the results are volution. We summarize in Section 9.

In the following we use a Λ CDM cosmology with values given within 1 σ of the WMAP results 91 (Komatsu et al. 2008), namely h = 0.71, $\Omega_m = 0.27$ and $\Omega_{\Lambda} = 0.73$. Here the Hubble constant

¹In contrast to the prominent optical emission lines found in FSRQs, BL Lac objects are radio-loud, rapidly variable sources displaying nearly featureless continua with emission-line equivalent widths < 5 Å (for review, see Urry & Padovani 1995).

²http://www.asdc.asi.it/agilebrightcat/

 $_{92} H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ is used.}$

93

2. Observations with the Large Area Telescope

The Fermi-LAT is a pair-conversion gamma-ray telescope sensitive to photon energies greater 95 than 20 MeV. It is made of a tracker (composed of two sections, front and back, with different 96 capabilities), a calorimeter and an anticoincidence system to reject the charged-particle background. 97 The LAT has a large peak effective area ($\sim 8000 \text{ cm}^2$ for 1 GeV photons in the event class considered 98 here), viewing ≈ 2.4 sr of the full sky with excellent angular resolution (68% containment radius 99 $\approx 1^{\circ}$ at E = 1 GeV for the front section of the tracker and about a factor of 2 larger for the back 100 section). A full description of the LAT instrument and its predicted performance are reported in 101 Atwood et al. (2009). During the first year, the telescope operates in sky-survey mode observing 102 the whole sky every 3 hours. The overall coverage of the sky is fairly uniform, with variations of 103 around $\simeq 15\%$ around the mean value.

The LAT data used here were collected during the first 3-month all-sky survey, from August 4 105 to October 30 2008. We refer to the companion paper (Abdo et al. 2009c) for a full description of 106 the data selection and analysis. In order to avoid background contamination from the bright Earth 107 limb, time intervals where the Earth entered the LAT Field-of-View (FoV) were excluded from this 108 study (corresponding to a rocking angle < 47 deg). In addition, events that were reconstructed 109 within 8° of the Earth limb were excluded from the analysis (corresponding to a zenith angle cut 110 of 105°). Due to uncertainties in the current calibration, only photons belonging to the "Diffuse" 111 class with energies above 100 MeV were retained. These photons provide the purest gamma-ray 112 dataset. The energy range was even more restricted in the source detection and spectral fitting 113 analyses described below, where only photons with E >200 MeV were selected. The list of sources 114 reported in Tables 1 and 2 was obtained as the result of the source detection, localization and 115 significance estimate analyses described in detail in Abdo et al. (2009c).

The source detection step made use of two wavelet algorithms, (mr_filter) (Starck & Pierre 117 1998) and (PGWAVE) (Ciprini et al. 2007). The algorithms were run independently for different 118 energy bands associated with different localization power and the results were cross-checked. The 119 positions of the sources for which the detection significance was above threshold (4σ) were then 120 refined using (*pointfit*), a simplified likelihood method (see Abdo et al. (2009c)). This algorithm 121 uses photons with E>500 MeV and returns the optimized sky position as well as an estimate of the 122 error radius for most detected sources. As discussed in Abdo et al. (2009c), the final error in the 123 source position was estimated by multiplying the error radius returned by the algorithm by a factor 124 close to 1.4 and adding 0.04° in quadrature (estimated from the residuals between the estimated 125 and expected position of Vela). The 95% confidence error radius was then evaluated assuming a 126 2-D normal distribution.

¹²⁷ To better estimate the source significance, we used the maximum likelihood algorithm imple-

¹²⁸ mented in (*gtlike*) a tool that is part of the standard *Fermi*-LAT *ScienceTools* software package³. ¹²⁹ The flux, photon index and test statistic (TS) of each source in the energy range 0.2-100 GeV were $_{130}$ determined by analyzing regions of interest (ROI) typically 15° in radius. The model of the ROI ¹³¹ used to fit the data was built taking into account of all the sources detected within a given ROI. 132 The isotropic background and Galactic Diffuse background models used in the fit are discussed in 133 Abdo et al. (2009c). Each source was modeled with a simple power law (kE^{- Γ}) for photons E> 200 ¹³⁴ MeV. The flux [E>100 MeV] (F₁₀₀), which is conventionally reported, was then calculated with the 135 fitted parameters. This flux will be used throughout this paper. The spectral energy distributions ¹³⁶ of some bright sources show clear evidence for a break or curvature. A fit with a single power law ¹³⁷ function is certainly not the most appropriate choice for these sources but the resulting photon 138 index does reflect the spectral hardness. A more detailed spectral analysis of the LBAS sources 139 is beyond the scope of this paper. The source fluxes were also estimated by fitting independent ¹⁴⁰ power law functions in two energy bands (0.1-1 GeV) and (1-100 GeV) and summing up the two ¹⁴¹ obtained fluxes. These fluxes (F_25 in Table 3) are the same as those reported in the *Fermi* bright ¹⁴² source list paper (Abdo et al. 2009c). For most sources, the fluxes obtained by the two methods $_{143}$ are consistent within 30%.

The same procedure was applied to generate weekly light curves (spanning a 12-week period). ¹⁴⁵ From those, the weekly peak flux as well as a variability index (corresponding to a simple χ^2 ¹⁴⁶ criterion) were derived. The variability tag reported in this paper is set for sources associated with ¹⁴⁷ a probability of being constant lower than 1%. A few representative light curves are displayed in ¹⁴⁸ Fig. 1.

This analysis was performed with the preflight instrument response functions (P6_V1). In ¹⁵⁰ flight, the presence of pile-up signals in the LAT tracker and calorimeter left by earlier particles ¹⁵¹ was revealed in periodic-trigger events. This feature leads to a reduction of the real acceptance as ¹⁵² compared to the predicted one as fewer events pass the rejection cuts, most notably for low-energy ¹⁵³ photons. The magnitude of this reduction is still under investigation, but the fluxes reported here ¹⁵⁴ may be lower than the true ones by as much as 30% and the photon indices greater than the true ¹⁵⁵ ones by as much as 0.1 (true spectra could be softer by 0.1 unit in the photon index). Because ¹⁵⁶ of the current uncertainty, no correction has been applied to the results. This uncertainty applies ¹⁵⁷ uniformly to all sources. Our relative errors are much smaller (about 3% on the flux, Abdo et al. ¹⁵⁸ 2009c). With the acceptance used in this analysis, the measured fluxes of the 3 bright pulsars, ¹⁵⁹ Vela, Geminga and Crab (Abdo et al. 2009c) are found to be compatible within 11% with those ¹⁶⁰ reported in the 3EG catalog.

Fig. 2 shows the 3-month flux sensitivity for TS=100 and a photon index=2.2 as a function of the sky position, calculated by a semi-analytical, maximum likelihood estimate of the significance. This estimate takes the actual exposure, the PSF and the different backgrounds (galactic diffuse, textragalactic diffuse and instrumental) into account. The limiting flux is higher at low galactic

³http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/

¹⁶⁵ latitude due to a higher galactic diffuse background and close to the celestial south pole (l $\simeq 302^{\circ}$, ¹⁶⁶ b $\simeq -27^{\circ}$) where the exposure is lower.

The final result of the detection analysis is a list of 205 sources with a (TS > 100, ~ 10 σ), 167 The final result of the detection analysis is a list of 205 sources with a (TS > 100, ~ 10 σ), 168 composing the LAT Bright Source (0FGL) list (see Table 6. in Abdo et al. 2009c). For comparison, 169 31 sources detected by EGRET have a significance greater than 10 σ in the 3EG (Hartman et al. 170 1999) and EGR (Casandjian & Grenier 2008) catalogs. Of these, only 13 were detected at $|b| > 10^{\circ}$. 171 In the 0FGL, a total of 132 sources, including 7 pulsars, are present at $|b| > 10^{\circ}$. We have explored 172 the possibility of associating AGNs with the 125 remaining sources.

3. Source association

Any source association procedure primarily relies on spatial coincidence. Fig. 3 shows the 175 95% error radius vs (TS) for the sources considered here. This radius depends on both the flux 176 and the photon index, with a mean of 0.14°. For comparison, the average corresponding radius 177 for the blazars in the 18 month *EGRET* sky survey is 0.62°. Of the 186 |b| > 10° 3EG sources, 178 66 (35%) had "high" (but unspecified) confidence positional associations with blazars in the 3EG 179 catalog. Another 27 positional coincidences were noted at lower significance. Although subsequent 180 work (e.g. Mattox et al. 2001; Sowards-Emmerd et al. 2003) did find additional associations, ~40% 181 of the high-latitude 3EG sources remained unidentified.

Although the LAT localization accuracy is much better than those of previous gamma-ray tele-¹⁸³ scopes, it is not good enough to enable a firm identification of a LAT source based solely on spatial ¹⁸⁴ coincidence. For the LAT, a firm identification is assumed only if correlated variability is observed ¹⁸⁵ at different wavelengths. In order to find associations between LAT sources and AGNs, two differ-¹⁸⁶ ent approaches were pursued. The first method is based on a procedure similar to that developed ¹⁸⁷ by Sowards-Emmerd et al. (2003) for associating *EGRET* blazars with radio counterparts using an ¹⁸⁸ observational figure of merit (FoM). The second one is based on the calculation of source association ¹⁸⁹ probabilities following a Bayesian approach (de Ruiter et al. 1977; Sutherland & Saunders 1992), ¹⁹⁰ similar to that used by Mattox et al. (2001) to associate *EGRET* sources with radio sources. This ¹⁹¹ method is described in Abdo et al. (2009c).

Several catalogs were used by the two association methods, the most important ones being 193 the Combined Radio All-Sky Targeted Eight GHz Survey (CRATES; Healey et al. 2007) catalog 194 and the *Roma-BZCAT*⁴ (Massaro et al. 2007). The CRATES catalog contains precise positions, 195 8.4 GHz flux densities, and radio spectral indices for more than 11,000 flat-spectrum sources over 196 the entire $|b| > 10^{\circ}$ sky. The *Roma-BZCAT* is a master list of blazars based on an accurate 197 examination of literature data and presently includes about 2700 sources, all observed at radio 198 and optical frequencies and showing proper characteristics of blazars. Sources are classified as BL

173

⁴http://www.asdc.asi.it/bzcat

¹⁹⁹ Lacertae objects (BZB), flat spectrum radio quasars (BZQ) or as blazars of uncertain type (BZU).

200

3.1. The Figure-of-Merit Method

The figure of merit (FoM) approach requires a large, uniform all-sky sample of radio sources from which to draw; for this purpose, we use the Combined Radio All-Sky Targeted Eight GHz Survey (CRATES; Healey et al. 2007) catalog. In order to quantify the correlation between CRATES sources and LAT detections, we compare the average number of positional coincidences between LAT sources and CRATES sources to the number of positional coincidences between LAT sources and sources drawn from 1,000 randomized simulations of the radio sky. We count as a positional coincidence any occurrence of a radio source (real or simulated) within twice the 95% error radius of a LAT source, and we generate the simulated radio skies by scrambling the Galactic coordinates post the CRATES sources while keeping their radio flux densities, spectral indices, and counterpart RASS fluxes intact.

We define the excess fractional source density of radio/ γ -ray matches as $n = 1 - (N_{\text{rand}}/N_{\text{CRATES}})$ 211 ²¹² and we compute this quantity in bins of radio flux density $S_{8.4}$ at 8.4 GHz, radio spectral index α , ²¹³ and X-ray flux F_X from the ROSAT All-Sky Survey (RASS; Voges et al. 1999). These functions— $214 n(S), n(\alpha), \text{ and } n(F_X)$ — constitute the counterpart spectral energy distribution (SED) components ²¹⁵ of the FoM. The final component is the dependence on the offset between the radio position and 216 the LAT position, which we model simply as $n_{\rm pos} = 1 - CL$, where CL is the confidence limit ²¹⁷ of the LAT localization contour passing through the radio position. The FoM is then given by $_{218}$ 100 × n(S) × $n(\alpha)$ × $n(F_X)$ × n_{pos} . To evaluate the significance of the FoM, we again generated, in ²¹⁹ the manner described above, 1,000 random simulations of the radio sky and computed the average ²²⁰ distribution of FoM. We compared this to the distribution of FoM for the real CRATES sky by ²²¹ again computing the excess fractional source density as a function of FoM. This fractional excess 222 can be directly interpreted as a probability P_i of radio/ γ -ray association for source i, giving an ²²³ immediate mapping from FoM to association probability for each individual source (i.e., $1 - P_i$ is ²²⁴ the probability of a false positive association). We find that 1,000 simulated skies result in sufficient 225 statistics in each FoM bin to ensure that the mapping is robust. Very similar results are obtained 226 with 10,000 simulations.

The results of this association procedure are shown in Table 1 and Table 2. Most of the associated radio sources are in the Candidate Gamma-Ray Blazar Survey (CGRaBS; Healey et al. 229 2008), an optical survey of the 1,625 CRATES sources that were most similar in their radio and 230 X-ray properties to the 3EG blazars. Optical spectroscopy of the sources with unknown redshifts is 231 ongoing. We also considered the possibility of an association with a non-CRATES radio source when 232 no CRATES association was found. Indeed, a FoM can be computed for any object for which the 233 necessary radio data are available. Thus, for those LAT sources without CRATES associations, we 234 drew candidate counterparts from the 1.4 GHz NRAO VLA Sky Survey (NVSS; Condon et al. 1998) 235 or the 843 MHz Sydney University Molonglo Sky Survey (SUMSS; Mauch et al. 2003), searched ²³⁶ NED for archival 8.4 GHz data, and calculated the FoM for each candidate. These procedures ²³⁷ find high-confidence (P > 0.90) associations for 101 of the 125 non-pulsar sources in the 0FGL ²³⁸ list with $|b| > 10^{\circ}$ for an association rate of 81%. We also find low-confidence FoM associations ²³⁹ (0.40 < P < 0.90) for 14 more sources, bringing the total association rate to 92%. Thus, the ²⁴⁰ radio-bright blazar population continues to dominate the extragalactic sky.

The individual association probabilities can be used to estimate the number of false positives 242 in a given sample: if the probabilities P_i are sorted from highest to lowest, then the number of false 243 positives in a sample of k sources is $N_{\text{false}} \approx \sum_{i=1}^{k} (1 - P_i)$. Among the high-confidence associations, 244 there are ~3 false positives, and less than one of the 74 most probable associations should be false.

We also studied the power of the FoM analysis to reject a blazar association for a LAT source. 245 246 We considered NVSS/SUMSS sources in the direction of the unassociated LAT sources and com-²⁴⁷ puted the FoM that each source would have if (A) it were as bright as the 4.85 GHz flux density 248 upper limit from the Green Bank 6 cm survey (GB6; Gregory et al. 1996) or the Parkes-MIT-NRAO 249 survey (PMN; Griffith & Wright 1993) (unless the source had an actual GB6/PMN detection, in ²⁵⁰ which case we used the measured flux density) or (B) its radio spectrum were as severely inverted $_{251}$ as $\alpha = +0.75$ between 1.4 GHz and 4.85 GHz, whichever constraint was tighter. From the low-252 frequency radio spectrum (or upper limits), we extrapolated the implied 8.4 GHz flux density. If ²⁵³ the resulting FoM indicated that the source could conceivably be a flat-spectrum blazar, then we 254 drew no conclusion, but if we found that the "best-case" association probability were 0%, then 255 we concluded that the LAT source was not associated with any typical member of the population 256 of flat-spectrum blazars, and we refer to such cases as "anti-associations." Note that the spectral $\alpha = +0.75$ is an extremely conservative cutoff. The most inverted radio spectrum for any 258 actual association has $\alpha < 0.65$. We are able to secure anti-associations for 10 sources. In fact, five ²⁵⁹ of these turn out to be high-latitude LAT pulsars and pulsar candidates. This shows that, given a ²⁶⁰ reliable LAT error circle, the FoM analysis is capable of indicating definitively that a source is not 261 a blazar

262

3.2. Summary of association results

The combination of the FoM (described above) and positional association methods yields a number of 106 high-confidence ($P \ge 0.90$) associations (constituting the LBAS) and 11 lowconfidence (0.40 < P < 0.90) associations listed in Table 1 and 2 respectively. Simple extrapolation of these numbers implies that the LAT should be detecting some 20-25 blazars through the Galactic plane at $|b| < 10^{\circ}$. Indeed, several have already been located, e.g. 0FGL J0036.7+5951 (1ES 0033+595), 0FGL J0730.4-1142 (PKS 0727-11), 0FGL J0826.0-2228 (PKS 0823-223), 0FGL J1802.6-3939 (PMN J1802-3940), 0FGL J1833.4-2106 (PKS 1830-211). A more complete search of Galactic background blazars, incorporating spectrum, variability and multiwavelength properties is in progress. Tables 1 and 2 report, for each source, the LAT name, the name of the associated source 273 based on the FoM method, the value of the FoM parameter and its probability, the name of the 274 positionally associated source and its probability, the redshift and the AGN class. Fig. 4 shows 275 the sky location of the LBAS AGNs.

One source, 0FGL J10340+6051 reported in Table 1, merits special comment. Two radio 277 associations were found by the FoM method for this γ -ray source, one with very high probability and 278 one with lower, but still significant, probability reported in Table 2. Although the high-probability 279 source likely dominates the γ -ray emission, it is entirely plausible that the low-probability source 280 contributes non-negligibly to the total γ -ray flux. We believe that as the LAT detects more sources 281 and confusion of the γ -ray sky increases, the power of the FoM formalism will become increasingly 282 important to the identification of multiple lower-energy counterparts of complex γ -ray sources.

Fig. 5 shows the overall, normalized angular separation distributions for both sets of sources 284 (i.e. high- and low-confidence associations). The solid curve corresponds to the expected distribu-285 tion (χ^2 distribution with 2 d.o.f.) for real associations, the dashed one for accidental associations. 286 This figure provides confidence that most associations are real. From this figure, it appears that the 287 1.4 correction factor applied to the error radius is somewhat overestimated. This overly conservative 288 factor will be significantly reduced with additional analysis updates.

Four new blazars were discovered. Two of these, CRATES J1012+2439, and CRATES J1032+6051 were classified as FSRQ blazars while CRATES J0144+2705 is a BL Lac. The classification of these three sources was made on the basis of the broad lines observed in their optical spectrum obtained after the LAT detection (Shaw et al., in preparation). The forth new LAT detected blazar is CLASS J1054+2210. Its classification as a BL Lac object was made possible by the analysis of its optical spectrum available at the SDSS on-line archive. As discussed above, CRATES J1032+6051 is the source which has a low probability to be associated with 0FGL J10340+6051.

The other sources listed in Table 1 and 2 were classified as FSRQ or BLLac following the *Roma*-BZCat and CRATES/CGRaBS catalogs. Some sources, which cannot be properly classified because of the scarcity of available data or which show optical spectra intermediate between those of BL Lacs, FSRQs or radio galaxies, were assigned to the "uncertain class" ("Unc" label in the ano tables).

Based on this classification, the LBAS comprises 57 FSRQs, 42 BL Lac objects, 5 blazars of uncertain type, and 2 radio-galaxies (RGs). The relevant *EGRET* sample of reference corresponds to that of the 18 month *EGRET* all-sky survey during Phase 1 of the CGRO mission (Fichtel et al. 1994; Dermer 2007). This survey had relatively uniform exposure, and contained 60 sources, 46 sof FSRQs, 14 BL Lacs. BL Lacs make up 40% of the LBAS blazars, a fraction significantly higher than found with *EGRET* (23%). The detection of hard sources (BL Lac objects, see below) by the LAT is intrinsically favored over soft ones (FSRQs). This is partly due to the strongly energy-dependent PSF. The larger bandpass and higher energy for the peak sensitivity (in the ~ 1-5 GeV range) of the LAT as compared to *EGRET* adds to this effect. Eleven LBAS sources are associated with blazars already detected in the TeV energy range by the ground based imaging air Cherenkov telescopes. Among these, 7 are classified as high-frequency peaked BL Lacs (HBLs): 1ES 1011+496, Mrk 421, PG 1553+11, Mrk 501, 1ES 1959+650, PKS 2005-489 and PKS 2155-304; 3 are low-frequency peaked BL Lacs (LBLs): 3C 66A, W Com and BL Lac and one is a FSRQ: 3C 279. These 11 sources represent more than 50% of the blazars detected so far (21). The results of simultaneous observations that cover the optical, Aharonian et al. (2009). Another three HBLs in the LBAS are not yet detected in the TeV range: KUV00311-1938, 1ES0502+675, B3 0133+388. A total of 10 HBLs are thus present in the LBAS, are remarkable feature given that sources in this class were difficult to detect in the GeV range. Many 200 of these sources were not particularly flaring at other wavelengths during the period of observation.

We compared the broad-band (radio, optical, X-ray) properties of our sample of *Fermi*-LAT detected blazars with those of the known blazars listed in the *Roma*-BZCat catalog and found that the broadband properties of the *Fermi*-LAT detected BL Lacs and FSRQs are consistent with the parent population of FSRQs and BL Lacs. This is illustrated in Fig. 6 displaying the soft X-ray flux set with the full blazar catalog.

The LBAS includes 13 sources (10 FSRQs and 3 BL Lacs) that were detected in a flaring state promptly announced to the community through Astronomical Telegrams. Among these, 0FGL J2254.0+1609, associated with 3C 454.3, is the brightest gamma-ray extra-galactic source observed in the 3-month *Fermi*-LAT survey and is studied in detail in Abdo et al. (2009a).

The *Fermi*-LAT has discovered gamma-ray emission from a source having an high-confidence an association with NGC 1275, the supergiant elliptical galaxy at the center of the Perseus galaxy cluster. EGRET observations yielded only an upper limit to the NGC 1275 gamma-ray emission. and All the details about the gamma-ray properties of this source will be reported in Abdo et al. (2009b).

³³⁴ Cen A is the nearest radio galaxy to us and it was one of the few radio galaxies associated with ³³⁵ a 3EG source (J1324–4314; Sreekumar et al. 1999). It is included in the LBAS and the position ³³⁶ of its nucleus is well inside the 95% confidence error radius of the source 0FGL J1310.6–4301. ³³⁷ The measured *Fermi* flux is $F_{100} \simeq 2.3 \times 10^{-7}$ ph cm⁻² s⁻¹, about a factor of 2 greater than that ³³⁸ measured by *EGRET* (Sreekumar et al. 1999).

Recently, two more sources reported in the 3EG catalog were tentatively associated with ato radio galaxies, 3C 111 (Hartman et al. 2008), and possibly NGC 6251 (Mukherjee et al. 2002; at Foschini et al. 2005). These objects are not LBAS sources but the number of radio-galaxies deat tected at high-energy is expected to increase in the near future as more data accumulate.

Table 4 lists the 33 sources associated with 3EG sources (two more located at $|b| < 10^{\circ}$ were at also incorporated). Three bright EGRET blazars associated with 0827+243, PKS 1622-297 and 345 1730-130 (NRAO 530), whose average EGRET fluxes are in the range of $(25 - 47) \times 10^{-8}$ ph(E >at 100 MeV) cm⁻² s⁻¹ do not appear in the LBAS. Presumably, these blazars are simply in a lower at flux state than when EGRET was in operation. These 3 sources are also among the 22 sources in ³⁴⁸ the pre-launch LAT monitored list⁵. Of these 22 sources, 17 have high-significance LAT detections ³⁴⁹ in the first 3-months of data. The remaining two monitored sources (H 1426+428, 1ES 2344+514) ³⁵⁰ did not have previous 3EG detections and thus were not expected to be very bright GeV sources.

We note that the LBAS object B2 0218+35 is a well-known gravitational lens. The source J52 PMN J0948+0022, associated with 0FGL J0948.3+0019, has a flat radio spectrum, but shows an optical spectrum with only narrow emission lines, making it an "uncertain"-type object in the J54 Roma-BZCat.

355

356

4. Gamma-ray properties of the LBAS

4.1. Introduction

Table 4 gives similar parameters for the subset of 35 sources (including both high-confidence ³⁶⁷ and low-confidence associations, plus two at $|\mathbf{b}| < 10^{\circ}$) corresponding to 3EG sources. This subset ³⁶⁸ will be discussed in more detail in section 5.

The source photon index is plotted as a function of the flux in Fig. 7. It is already visible 370 in this figure that the photon indices of BL Lac objects (open circles) and FSRQs (closed circles) 371 are quite distinct. The flux sensitivity (calculated in the same way as for the map shown in Fig. 2 372 and depicted as solid lines for two different galactic latitudes) is fairly strongly dependent on the 373 photon index. The upper envelope in the spectral index - flux (>100 MeV) plot reflects that the 374 peak sensitivity of the LAT is at energies much higher than 100 MeV. These ranges of spectral 375 index and apparent flux limits translate to approximately constant limits above 1 GeV. For a 376 photon index of 2.2, the 10 σ flux sensitivity $F_{100} \simeq 5 \times 10^{-8}$ ph cm⁻² s⁻¹, about 3 times lower 377 than that of the Third *EGRET* catalog.

⁵http://fermi.gsfc.nasa.gov/ssc/data/policy/LAT_Monitored_Sources.html

4.2. Flux

It makes sense to compare the LBAS fluxes with those reported in the Third EGRET Catalog for the EGRET sample. As several analyses (e.g. Mücke & Pohl 2000; Dermer 2007) used the mean flux (maximum flux in all EGRET viewing periods), instead of the mean flux because of the fairly non-uniform coverage in the EGRET Catalog, comparisons will be performed both for mean and peak flux distributions. For *EGRET*, both distributions are biased as observations were preferentially made of sources known to be highly variable in the gamma-ray band, and some the observations were triggered by ToO requests when an object was brightly flaring in other wavebands. No such bias exists for the LAT.

Fig. 8a compares the mean flux distribution measured in the LBAS with that measured in the EGRET sample. The high-flux ends of these distributions look similar. This observation points EGRET sample. The high-flux ends of these distributions look similar. This observation points EGRET sample. The high-flux ends of these distributions look similar. This observation points EGRET sample constant global gamma-ray luminosity of detectable blazars at a given time, as can EGRET naively be expected. In stark contrast, the weekly peak flux distributions (Fig. 8b) look different, EGRET sample. This feature probably arises from EGRET sample. This feature probably arises from EGRET here, a given source had much less opportunity to explore very different states than in EGRET observations were conducted. Another illustration of this EGRET is given in Fig. 8c,d where the peak flux vs the mean flux and the peak flux/mean flux ratio EGRET variability timescales of months to years is well confirmed by the observation that only $\simeq 30\%$ of EGRET blazars are still detected by the LAT at a comparable flux.

399

4.3. Photon index

The photon index distribution gives insight into the emission and acceleration processes acting 401 within the AGN jets, as it enables some of the physical parameters involved in these processes to 402 be constrained. Moreover, it can be used to test whether the BL Lac and FSRQ populations have 403 different γ -ray emission properties.

Fig. 9 top displays the photon index distribution for all the LBAS sources. This distribution 405 looks fairly similar to that observed for the *EGRET* sample (Nandikotkur et al. 2007): it is roughly 406 symmetric and centered at $\gamma = 2.25$. The corresponding distributions for FSRQs and BL Lacs are 407 shown in Fig. 9 middle and bottom respectively. These distributions appear clearly distinct, with 408 little overlap between them. This is a remarkable feature, given that the statistical uncertainty 409 typically amounts to 0.1 for most sources. The distributions have (mean, rms)=(1.99, 0.22) for 410 BL Lacs and (2.40, 0.17) for FSRQs. We used a Kolmogorov-Smirnov (KS) test to test the null 411 hypothesis that both index samples are drawn from the same underlying distribution and found

378

⁴¹² a probability of 2×10^{-12} ⁶. Although indications for the existence of two spectrally distinct ⁴¹³ populations (BL Lacs and FSRQs) in the *EGRET* blazar sample were mentioned in the literature ⁴¹⁴ (Pohl et al. 1997; Venters & Pavlidou 2007), this is the first time that the distinction appears so ⁴¹⁵ clearly. The mean photon index of the 10 HBLs included in the LBAS is 1.76, i.e significantly lower ⁴¹⁶ (sources are harder) than the mean of the whole BL Lac subset as expected for these high-energy ⁴¹⁷ peaked sources.

To infer physical properties of the blazar populations from the observed photon index distri-419 butions, possible instrumental and/or statistical effects have to be assessed. A systematic bias may 420 indeed arise in the likelihood analysis of sources with low photon statistics. To quantify this possi-421 ble bias we performed a simulation study with the *gtobssim* tool which is part of the *Science Tools*. 422 This tool allows observations to be simulated using the instrument response functions and the real 423 orbit/attitude parameters. Both instrumental and diffuse backgrounds were modeled on the basis 424 of the real backgrounds observed by the LAT.

1. Samples of sources (100 FSRQs and 100 BL Lacs) with random positions in the $|b| > 10^{\circ}$ sky were simulated.

427 2. The real spacecraft orbit and attitude profiles spanning 94 days starting from Aug 4 2008
428 were used.

3. The sources were assumed to have a power-law energy distributions. The photon index was drawn from a gaussian distribution with (mean, sigma)= (2.0,0.3) for BL Lacs and (2.3,0.3) for FSRQs. These distributions are referred to as "input" probability distribution functions (pdfs).

433 4. Fluxes were generated according to a lognormal distribution $f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp \frac{-(\ln x - \mu)^2}{2\sigma^2}$ with 434 $\mu = \ln 10^{-7}$ and $\sigma = 0.4$

A likelihood analysis was performed for all sources. The pdfs of the spectral indices and fluxes
were built for sources with TS>100 ("like" pdfs). The TS cut was also applied to the "input"
pdfs.

Possible bias arising from the likelihood analysis as well as the robustness of the separation 439 between BL Lac and FSRQ "like " pdfs were studied by means of KS tests. "Input" and "like" pdfs 440 were found to be consistent with a probability of 99.5%, 88.4% for BLLacs and FSRQs respectively, 441 excluding any sizeable bias coming from the likelihood analysis. The TS cut was observed to only 442 affect the distribution tails. Concerning the separation between BL Lacs and FSRQs, the KS test 443 returned that the probability for the two distributions to result from the same parent distribution 444 is 7×10^{-7} .

 $^{^{6}}$ We are aware of the fact that the KS test is not optimal for binned data, but it is accurate enough to reject the null hypothesis

5. Sources already detected by EGRET

After an elapsed time of about 10 years, it is interesting to look at the fraction of the AGNs 446 447 that were active in the EGRET era and are detected again by the LAT with a comparable flux. 448 Out of 116 sources in the *Fermi*-LAT sample, 3 sources have positions compatible with sources in ⁴⁴⁹ the Third *EGRET* Catalog. Two additional sources, 0FGL J1802.6–3939 and 0FGL J1833.4–2106 $_{450}$ located at $|\mathbf{b}| < 10^{\circ}$ fulfills this condition as well. The 35 sources are listed in Table 4, along with 451 the mean fluxes and photon indices measured by the *Fermi*-LAT and *EGRET* as well as the AGN 452 class. These 35 AGNs are composed of 20 FSRQs, 11 BL Lacs, 3 of uncertain type and 1 AGN 453 (Cen A). The BL Lacs are again overrepresented (with a fraction of 31%) as compared to the 454 1st year sky survey EGRET sample (14 out of 60, i.e. 23%). The (non-simultaneous) fluxes and 455 indices measured by both intruments are compared in Fig. 12. The large scatter observed when 456 comparing the fluxes (Fig. 12 left) can be expected from the variable nature of the blazar emission. 457 The scatter observed when comparing the photon indices is more moderate, as could be expected 458 from the fairly strong correlation between photon index and blazar class mentioned above. For 459 many sources, and most especially for BL Lacs, the indices are measured by the *Fermi*-LAT with 460 a much better accuracy.

461

445

6. Radio gamma-ray connection

With 116/125 high |b|, non-pulsar LAT bright sources associated with radio sources in the 463 CRATES/CGRaBS and the *Roma*-BZCAT lists, we confirm the findings of the 3EG catalog. In 464 particular, 98/106 (~ 92%) of our high confidence associations have flux density above 100 mJy at 465 8.4 GHz. In terms of the radio luminosity $L_r = \nu L(\nu)$, the sources in the present sample with a 466 measured redshift span the range $10^{39.09} < L_r < 10^{45.33} \text{ erg s}^{-1}$. As shown by the histogram in Fig. 467 13, BL Lacs and FSRQ are not uniformly distributed in this interval, with the former on average 468 at lower radio luminosities ($\log L_{r, BL Lacs} = 42.8 \pm 1.1 \text{ [erg s}^{-1}$]) than the latter ($\log L_{r, FSRQ} =$ 469 44.4 ± 0.6 [erg s⁻¹]). Blazars of uncertain type generally lack a redshift. Of the two radio galaxies 470 associated with objects in the LBAS, NGC 1275 is similar to BL Lacs ($L_r = 10^{42.21} \text{ erg s}^{-1}$), while 471 Cen A lies at the very lower end of the radio power distribution, with $L_r = 10^{39.09} \text{ erg s}^{-1}$.

⁴⁷² Cen A, the source associated with 0FGL J1325.4–4303, is also the only source showing a ⁴⁷³ significant amount of extended radio emission at low frequency ($S_{8.4}/S_{low} = 0.005$). For all other ⁴⁷⁴ sources with a low frequency (typically, 365 MHz from the Texas survey, 325 MHz from the WENSS, ⁴⁷⁵ or 408 MHz from the B2) and a high frequency, high resolution (typically at 8.4 GHz from CRATES) ⁴⁷⁶ flux density measurement, we find little or no evidence of significant deviation from $L_{low} = L_{8.4}$. ⁴⁷⁷ Therefore, we find not only that all the sources in our sample are radio emitters, but that they ⁴⁷⁸ also possess compact cores with flat radio spectral index and much higher luminosity than those of ⁴⁷⁹ radio galaxies of similar or larger power (Giovannini et al. 1988).

480 Thanks to the comparatively large number of LBAS sources, it is worthwhile to perform a

⁴⁸¹ statistical comparison of their properties in the gamma-ray and radio bands. Previous studies based ⁴⁸² on EGRET data for 38 extragalactic point sources have been reported (Mücke et al. 1997), which ⁴⁸³ did not support claims of correlations between radio and gamma-ray luminosities. In particular, ⁴⁸⁴ the analysis of possible correlations needs to be treated with care, because of the many biases that ⁴⁸⁵ can arise, e.g. from the common redshift dependence when one considers luminosities, or from the ⁴⁸⁶ reduced dynamical range when one considers mean flux densities, just to name a few.

We have therefore looked at several possible pairs of observables, and we summarize our results in Table 5. In general, we apply the K-correction to the luminosities but not to the fluxes, since this would introduce a bias for the sources without a known redshift. We show in Fig. 14 (left and panel) the peak gamma-ray flux $S_{E>100 \text{ MeV}}$ vs the radio flux density $S_{8.4 \text{ GHz}}$ from CRATES (or and NED, in the few cases in which the source is not in the CRATES list). In general, BL Lacs tend to create correlations artificially from purely combining both populations. Given their different and redshift distributions, this would be even more apparent in the luminosity plane. For this reason, the redshift distributions, the significance of a radio-to-gamma-ray connection to be marginal at most on the analysis show the significance of a radio-to-gamma-ray connection to be marginal at most on the analysis of the present data, in particular for the FSRQs. Clearly, there is need for a deeper analysis and enlarged sample regarding this issue, including Monte-Carlo simulations, which we defer to an enlarged sample regarding this issue, including Monte-Carlo simulations, which we defer to an enlarged sample regarding this issue, including Monte-Carlo simulations, which we defer to an forthcoming paper.

Finally, we show in the right panel of Fig. 14 the radio luminosity vs. gamma-ray spectral index plane. Thanks to the large LAT energy range, the separation between BL Lacs and FSRQs is readily seen, showing a trend of softer spectral indices for more luminous radio sources. Moreover, this plot seems quite effective at finding sources of a different nature, such as the radio galaxy Cen A, whose gamma-ray index is much softer than that of other low power radio sources. For instance, 0FGL J00174-0503 is a FSRQ at z = 0.227 (Healey et al. 2008) with index = 2.71 and radio luminosity $L_r = 10^{42.36} \text{ erg s}^{-1}$, which could then be a rare case of low-energy peak and low radio luminosity blazar. The other source with large photon index (2.60) and comparatively low radio luminosity ($L_r = 10^{43.22} \text{ erg s}^{-1}$) is associated with the peculiar source PMN J0948+0022.

509

7. Population Studies

As described before, the LBAS includes 57 FSRQs, 42 BL Lac objects, 5 blazars of uncertain 511 type and 2 radio galaxies. Ten other sources have lower confidence associations with known blazars. 512 This sample is already comparable with that provided by EGRET and can be used to derive some 513 *early* results about the redshift and source count distributions and the luminosity function of blazars.

7.1. Redshifts

Fig. 15 and Fig. 16 display the redshift distributions for FSRQs and BL Lac objects, respec-516 tively, and their comparison with those of the parent distributions in the BZCat catalog. Please 517 note that 12 of 42 BL Lacs have no measured redshifts. BL Lac objects are generally found at low, 518 $z \leq 0.5$, redshift, whereas the peak of the FSRQ redshift distribution is around $z \approx 1$. Similar dis-519 tributions were observed for the *EGRET* blazars (Mukherjee et al. 1997). In the future, as fainter 520 sources become visible, detection of additional nearby radio-galaxies will enhance the number of 521 very low redshift objects in the AGN redshift distributions measured with the *Fermi* LAT.

Fig. 17 shows the luminosities of the detected sources plotted as a function of their redshifts. The isotropic gamma-ray luminosity L_{γ} was derived using:

$$L_{\gamma} = 4\pi S d_L^2 / (1+z)^{1-\alpha} \,. \tag{1}$$

⁵²² Here, S is the γ -ray energy flux (E > 100 MeV), α is the energy index and d_L is the luminosity ⁵²³ distance. A beaming factor $\delta = 1$ was assumed. The solid curve corresponds to a flux limit of F₁₀₀ ⁵²⁴ = 4 × 10⁻⁸ ph cm⁻²s⁻¹.

525

526

7.2. $\log N - \log S$

7.2.1. Monte Carlo Simulations

Proper population studies must rely on a thorough understanding of the properties of the 527 ⁵²⁸ survey where these objects have been detected. In order to properly estimate the source-detection 529 efficiency and biases, we performed detailed Monte Carlo simulations. The method we adopted ⁵³⁰ is the one developed for ROSAT analysis (Hasinger et al. 1993) and lately used (Cappelluti et al. 531 2007) for the analysis of the XMM-COSMOS data. For each source population (blazars, FSRQs ⁵³² and BL Lacs) we created a set of >20 LAT all-sky images with background patterns resembling 533 as close as possible the observed ones. The simulations were performed using a similar method as ⁵³⁴ that described in section 4.3. An extragalactic population of pointlike sources was added to each 535 simulated observation. The coordinates of each source were randomly drawn in order to produce $_{536}$ an isotropic distribution on the sky. Source fluxes were randomly drawn from a standard log N- $_{537}\log S$ distribution with parameters similar to the one observed by LAT (see next section). Even ⁵³⁸ though the method we adopt to derive the survey sensitivity does not depend on the normalization $_{539}$ or the slope of the input log N-log S, using the real distribution allows us to produce simulated 540 observations which closely resemble the real LAT sky. The photon index of each source was also $_{541}$ drawn from a Gaussian distribution with observed mean and 1σ width consistent with the real ⁵⁴² population. Thus, for the three simulation sets we adopted the following photon indices similar to 543 the measured ones:

• 2.24 ± 0.25 for the total blazar population;

• 2.41 ± 0.17 for the FSRQ population;

• 1.98 ± 0.22 for the BL Lac population.

More than 30000 sources were simulated for each population. The mock observations were processed applying the same filtering criteria used for real in-flight data. Source detection was performed on E>200 MeV photons with a simplified version of the detection algorithm⁷. For every pair of input-output sources, we computed the quantity:

$$R^{2} = \left(\frac{x - x_{0}}{\sigma_{x}}\right)^{2} + \left(\frac{y - y_{0}}{\sigma_{y}}\right)^{2} + \left(\frac{S - S_{0}}{\sigma_{S}}\right)^{2}$$
(2)

⁵⁴⁷ where x, y and S are the source coordinates and flux of the detected sources while x_0, y_0 and S_0 are ⁵⁴⁸ the corresponding values of the input sources and $\sigma_x, \sigma_y, \sigma_S$ the associated statistical uncertainties. ⁵⁴⁹ We then flagged those with the minimum value of \mathbb{R}^2 as the most likely associations. Only sources ⁵⁵⁰ at $|b| \ge 10^\circ$ are retained.

The goal of these simulations is to derive the probability of detecting a source (with given 552 mean properties, e.g. photon index and flux) in the LAT survey as a function of source flux. This 553 can be computed from the simulations reported above as the ratio between the number of detected 554 and input sources in a given flux bin. The detection efficiencies for the three source populations 555 are reported in Fig. 18. A few things can be noted readily. First, the bias of the LAT survey 556 against soft sources (i.e. FSRQs) is apparent. Second, the LAT $|b| \ge 10^{\circ}$ survey becomes *complete* 557 for $F(>100 \text{ MeV}) \ge 2 \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$ irrespective of the source photon index or its location in 558 the sky. Multiplying these functions by the solid angle Ω of the survey (34089.45 deg² in case of a 559 $|b| \ge 10^{\circ}$ cut) yields the so called sky coverage which is used for the statistical studies reported in 560 the next sections.

561

7.2.2. Incompleteness of the Extragalactic Sample

We report in Table 6 the composition of the $|\mathbf{b}| \ge 10^{\circ}$ sample. The number of sources with high-confidence associations is 106. Of these 57 are FSRQs and 42 are BL Lacs. As already shown the previous sections, FSRQs and BL Lacs are represented in almost equal fractions in the LAT biss survey. The 5 blazars with uncertain classifications are likely split between these two categories two categories as the redshift-luminosity plane (Fig. 17) shows. The incompleteness factor varies as a function of the sample under study. When considering the non-pulsar part of the high-confidence sample, the however, when considering the FSRQ and BL Lac samples separately one must also include the

⁷The complexity of the official detection algorithm makes it virtually impossible to apply it to a large number of data sets. We tested on real data that, for the scope of this investigation, our simplified detection algorithm produces results consistent with more elaborate ones.

⁵⁷⁰ sources with uncertain classifications. Thus the incompleteness factor of the FSRQ and BL Lac ⁵⁷¹ samples rises to ~ 15 %. A reasonable and simple hypothesis is one which assumes that these sources ⁵⁷² reflect the composition of the identified portion of the sample. This would mean that there are ⁵⁷³ an additional ~ 9 FSRQs and ~ 7 BL Lacs are hiding among the unidentified/unassociated/low-⁵⁷⁴ confidence sources. These uncertainties will be used in the next sections.

7.2.3. Source Counts Distributions

581

The source counts distribution, also known as the log N-log S, flux, or size distribution, is readily computed once the sky coverage is known through the expression:

$$N(>S) = \sum_{i=1}^{N_S} \frac{1}{\Omega_i} \deg^{-2},$$
(3)

where N_S is the total number of detected sources with fluxes greater than S, and Ω_i (i.e. Fig. 18 multiplied by the solid angle) is solid angle associated with the flux of the *i*th source. The variance of the source number counts is defined as

$$\sigma_i^2 = \sum_{i=1}^{N_S} \left(\frac{1}{\Omega_i}\right)^2. \tag{4}$$

⁵⁸² In building the source counts distributions, we used the source flux averaged over the three month ⁵⁸³ timescale. The log N-log S of the entire extragalactic sample (excluding pulsars) is shown in ⁵⁸⁴ Fig. 19.

We fitted the source counts distribution with a power-law model of the type:

$$\frac{dN}{dS} = n(S) = A \left(\frac{S}{10^{-7}}\right)^{-\alpha}.$$
(5)

A common practice in this case (e.g., see Ajello et al. 2008) is to fit the unbinned dataset employing a maximum likelihood (ML) algorithm. For this purpose the ML estimator can be written as

$$\mathcal{L} = -2\sum_{i} \ln \frac{n(S_i)\Omega(S_i)}{\int n(S)\Omega(S)dS} , \qquad (6)$$

⁵⁸⁵ where *i* runs over the detected sources. The 1σ error associated to the fitted parameters (in this ⁵⁸⁶ case α) is computed by varying the parameter of interest, while the others are allowed to float, ⁵⁸⁷ until an increment of $\Delta \mathcal{L}=1$ is achieved. This gives an estimate of the 68% confidence region for ⁵⁸⁸ the parameter of interest (Avni 1976). In this formulation of the ML function, the normalization ⁵⁸⁹ A is not a parameter of the problem. Once the slope α is determined, the normalization is derived ⁵⁹⁰ as the value which reproduces the number of observed sources. An estimate of its statistical error ⁵⁹¹ is given by the Poisson error of sources used to build the log N-log S.

Since the sky coverage is somewhat uncertain at very low fluxes, the fit is performed above $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of the $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The results of $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ even though all the data are displayed. The set $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ s}^{-1}$ even the sky coverage. The same result holds for $F(>100 \text{ MeV})= 7 \times 10^{-8} \text{ s}^{-1}$ distributions reported in Table 7.

The log N- log S distributions for FSRQs and BL Lacs are shown in Fig. 20 and 21. We do for not find any indication of a break in the source counts distributions of the two populations. As the fitting results of Table 7 show, there might be an intrinsic difference between the log N-log Sfor of both populations, with the source counts distribution of BL Lacs being flatter than that of of FSRQs. However, both of them are compatible within 1 σ errors with the Euclidean value of 2.5. Moreover, the analysis of the *flux-limited* sample (see bottom part of Table 7) confirms the results for of the main sample, showing that incompleteness is not a main issue in this study.

For the *EGRET* sample, a surface density for $F_{100} \ge 10^{-7}$ ph cm⁻² s⁻¹ of FSRQs and BL Lacs of 3.31 sr⁻¹ and 0.83 sr⁻¹, respectively, is reported (Mücke & Pohl 2000). From LAT we derive that the surface density (above $F_{100} \ge 10^{-7}$ ph cm⁻² s⁻¹) of FSRQs and BL Lacs is 4.41±0.72 sr⁻¹ and $_{12} 1.01\pm 0.17$ sr⁻¹ respectively. Thus the LAT results are in good agreement with *EGRET*.

A measurement of the number fluence using the average three-month fluxes of bright *Fermi* blazars of different classes is readily obtained from the log N-log S distributions through the expression:

$$F_{diffuse} = \int_{f_{min}}^{f_{max}} \frac{dN}{dS} S \, dS \,. \tag{7}$$

⁶¹³ Unless otherwise stated, we adopt a value for f_{min} of 4×10^{-8} ph cm⁻² s⁻¹. To compare with the ⁶¹⁴ EGRET results, the upper limit of integration cannot be set to infinity. Indeed, all point sources ⁶¹⁵ detected above $F_{100} \sim 10^{-7}$ ph cm⁻² s⁻¹ in the Second EGRET Catalog (2EG; Thompson et al. ⁶¹⁶ 1995) were subtracted in the measurement of the extragalactic diffuse γ -ray background (EDGB) ⁶¹⁷ (Sreekumar et al. 1998). Thus, we set f_{max} to 10^{-7} ph cm⁻² s⁻¹. The integral in Eq. 7 yields a ⁶¹⁸ total flux of $1.06(\pm 0.09) \times 10^{-6}$ ph cm⁻² s⁻¹ sr⁻¹ This can be compared with the intensity of the ⁶¹⁹ EDGB, as measured by EGRET, of 1.45×10^{-5} ph cm⁻² s⁻¹ sr⁻¹. Already in this small flux range, ⁶²⁰ LAT is resolving into pointlike sources $\sim 7\%$ of the *EGRET* EDGB. Preliminary analysis of the log ⁶²¹ N-log S distributions shows that LAT is expected to resolve a much larger fraction of the EDGB ⁶²² within the next few months of observation.

623

7.3. Evolution of Blazars

624 7.3.1. Evolutionary Test

A simple and robust test of evolution is the V/V_{MAX} test Schmidt (1968). The quantity V/V_{MAX} is the ratio between the (comoving) volume within which the source has been detected and the maximum comoving volume available for its detection. For a given source, V/V_{MAX} is expected to be uniformly distributed between 0 and 1. For a population uniformly distributed in Euclidean space (and with constant properties with z) and non-evolving, the average V/V_{MAX} sources. A value of $< V/V_{\text{MAX}} > 0.5$ indicates positive evolution (more sources or brighter sources at earlier times), and the opposite indicates negative evolution.

The comoving volume for a *ith* source is given by

$$V = \int_{z=0}^{z=z_i} \frac{dV}{dz} \ \Omega(L_i, z) dz, \tag{8}$$

⁶³³ where dV/dz is the comoving volume element per unit redshift and unit solid angle (see e.g. Hogg ⁶³⁴ 1999) and $\Omega(L_i, z)$ is the aforementioned sky coverage for the source with rest-frame luminosity ⁶³⁵ L_i at redshift z. We note that the definition of the V/V_{MAX} reported in Eq. 8 encompasses also ⁶³⁶ the definition of the V_e/V_a test (Avni & Bahcall 1980), which for the purposes here are formally ⁶³⁷ equivalent.

We computed the average $\langle V/V_{\text{MAX}} \rangle$ for FSRQs, BL Lacs and all sources in the high-639 confidence sample with measured redshift (these includes the sources with uncertain classification). 640 The results are summarized in Table 8. All 57 FSRQs present in the extragalactic sample (see 641 Table 6) have a measured redshift. The V/V_{MAX} shows that the population of FSRQs detected 642 by LAT evolves positively (i.e. there were more FSRQs in the past or they were more luminous) 643 at the 3σ level. This result is also confirmed by the analysis of the 29 FSRQs which constitute a 644 flux-limited sample (see lower part of Table 6).

Only 31 out of the 42 BL Lac objects have a measured redshift. The V/V_{MAX} test is compatible within ~ 1 σ with no evolution. Assigning the mean redshift value of the BL Lac sample (i.e. $\langle z \rangle = 0.38$) to those objects without a without a redshift produces a value of $\langle V/V_{\text{MAX}} \rangle = 0.472 \pm 0.046$. The result does not change if the redshift is drawn from a Gaussian distribution with mean and dispersion consistent with the observed redshift distribution of BL Lacs. However, it is difficult to assess the validity of both these hypotheses. Indeed, the fact that these objects show a featureless for continuum might suggest that their redshifts could be the largest in the sample (Padovani et al. ⁶⁵² 2007). In this case, their true redshift would produce a larger value of the V/V_{MAX} statistic. The ⁶⁵³ V/V_{MAX} of all the objects with a measured redshift in the high-confidence sample is compatible ⁶⁵⁴ with no evolution.

655

7.3.2. Luminosity Function of FSRQs

We estimate the gamma-ray luminosity function (GLF) in fixed redshift bins using the $1/V_{MAX}$ method (equivalent in our formalism to the $1/V_a$ method). For each bin of redshift the GLF can be expressed as

$$\Phi(L_{\gamma}, z) = \frac{dN}{dL_{\gamma}} = \frac{1}{\Delta L_{\gamma}} \sum_{i=1}^{N} \frac{1}{V_{MAX,i}}$$
(9)

⁶⁵⁶ where $V_{MAX,i}$ is the maximum comoving volume associated with the i_{th} source (see Eq. 8). The ⁶⁵⁷ cumulative and differential luminosity functions of FSRQs, in three redshift bins, are reported in ⁶⁵⁸ Fig. 22. One thing is readily apparent from this figure. FSRQs are strongly evolving. A non-⁶⁵⁹ evolving population would have GLFs which are continuous across different redshift bins. In the ⁶⁶⁰ case of FSRQs we note a change in space density (or luminosity) with redshift. Also, one can see ⁶⁶¹ that the space density of intermediate-luminosity FSRQs (e.g. $L_{\gamma} \sim 10^{47} \text{ erg s}^{-1}$) is increasing with ⁶⁶² redshift. On the other hand, the most luminous FSRQs have an almost constant space density ⁶⁶³ with redshift. This might be a sign of a cut-off in the evolution of FSRQs. A decline in the space ⁶⁶⁴ density of luminous FSRQs has also been determined at radio and X-ray energies (e.g., Wall et al. ⁶⁶⁵ 2005; Padovani et al. 2007; Ajello et al. 2009). We derive from the GLF that the space density of ⁶⁶⁶ FSRQs with $L_{\gamma} > 7 \times 10^{45} \text{ erg s}^{-1}$ is 1.05±0.13 Gpc⁻³.

We made a Maximum Likelihood fit to the three unbinned datasets using a simple GLF model defined as

$$\Phi(L_{\gamma}, z) \propto L_{\gamma}^{-\beta} . \tag{10}$$

The ML estimator can be expressed similarly to Eq. 6 by the expression

$$\mathcal{L} = -2\sum_{i} \ln \frac{\Phi(L_{\gamma,i}, z_i) V(L_{\gamma,i}, z_i)}{\int \Phi(L_{\gamma}, z) V(L_{\gamma}, z) dL_{\gamma}} .$$
(11)

⁶⁶⁷ The results of the ML fits to the GLF of FSRQs are summarized in Table 9. For $z \ge 1$, the GLF ⁶⁶⁸ can be successfully parametrized by a single power-law model. The slope is compatible with the ⁶⁶⁹ canonical value of 2.5–2.8 determined for X–ray selected samples of radio-quiet AGNs (Ueda et al. ⁶⁷⁰ 2003; Hasinger et al. 2005; Silverman et al. 2008). This indicates that at high redshifts the *Fermi*-⁶⁷¹ LAT is sampling the bright end of the luminosity distribution of FSRQs. For $z \le 1$, the best-fit ⁶⁷² value of the slope β is 1.56±0.10, compatible with luminosity function slopes found in radio/X-ray ⁶⁷³ selected samples (Padovani et al. 2007). This is much flatter than the canonical value of $\beta = 2.5$. ⁶⁷⁴ As the cumulative GLF shows (left panel of Fig. 22), there might be a hint of a break with respect ⁶⁷⁵ to a simple power-law model in the GLF. A more detailed analysis, comparing different methods ⁶⁷⁶ to derive the GLF and its evolution, will be considered in future publications.

7.3.3. Luminosity Function of BL Lacs

The luminosity function of BL Lacs, reported in Fig. 23, is in agreement with the results of V/V_{MAX} test. Indeed, sub-dividing the entire BL Lac sample in two bins of redshift produces two GLFs which connect smoothly to each other. A simple power-law GLF describes the entire dataset well. The GLF slope is $\beta = 2.17 \pm 0.05$ and is well in agreement with the value of 2.12 ± 0.16 reported for a radio/X-ray selected sample of BL Lacs (Padovani et al. 2007). The GLF 2.12 ± 0.16 reported for a radio/X-ray selected sample of BL Lacs (Padovani et al. 2007). The GLF 2.12 ± 0.16 reported for evolution, with a GLF slope $\beta = 2.37\pm0.3$. Past claims (e.g., Rector et al. 2000; Beckmann et al. 2003) of negative evolution of BL Lac objects, selected mainly in the X-ray 2000; Beckmann et al. 2003) of negative evolution of BL Lac objects, selected mainly in the X-ray 2000; Beckmann et al. 2003) of negative evolution of BL Lac objects, selected mainly in the X-ray 2000; Beckmann et al. 2003) of negative evolution of BL Lac objects, selected mainly in the X-ray 2000; Beckmann et al. 2003) of negative evolution of BL Lac objects, selected mainly in the X-ray 2000; Beckmann et al. 2003) in space density. From our GLF we derive that the density of BL Lac 2000; Beckmann et al. 200^{2} in $1.9(\pm0.4) \times 10^{-7}$ Mpc⁻³.

Above a luminosity of $L_{\gamma} \sim 10^{47} \text{erg s}^{-1}$, the cumulative density of BL Lacs and FSRQs is comparable, with BL Lacs being ~ 3 times less numerous than FSRQs. However, given the fact that they reach lower luminosities, BL Lacs are ~ 200 times more abundant than FSRQs above their respective limiting luminosities.

693

677

8. Discussion

The value TS > 100 defining the detection significance for bright sources corresponds to $\geq 10 \sigma$ significance, or a limiting flux over the entire high-latitude sky of $\approx (3-10) \times 10^{-8}$ ph(> 100 MeV) 696 cm⁻² s⁻¹ during the three-month sky survey. In comparison, *EGRET* reached a 5 σ high-confidence 697 on-axis flux limit of $\approx 15 \times 10^{-8}$ ph(> 100 MeV) cm⁻² s⁻¹ for a two-week pointing over ≈ 0.5 sr 698 of the sky, only becoming complete at $S F_{100} \approx 25 \times 10^{-8}$ ph (cm⁻² s⁻¹ (Dermer 2007). Of the 699 66 high-confidence and 27 lower-confidence AGN associations in the 3EG catalog (Hartman et al. 700 1999), 32 sources in the *Fermi*-LAT sample were also detected with *EGRET*. An additional source 701 is detected at $|\mathbf{b}| < 10^{\circ}$. Many of the other high-confidence *EGRET* sources are detected with 702 *Fermi*-LAT at TS < 100, reflecting the rapid variability and periods of activity of γ -ray blazars on 703 timescales of years or longer.

During the 18-month *EGRET* all-sky survey when exposure to all parts of the sky was relatively ros uniform compared to the remainder of the mission, 60 high-confidence blazars consisting of 14 BL ros Lacs and 46 FSRQs were found (Fichtel et al. 1994). Compared with $\approx 23\%$ of *EGRET* blazars ror being BL Lac objects, nearly 40% of the *Fermi*-LAT blazars are BL Lac objects. The larger fraction ros of BL Lac objects in the *Fermi* bright AGN sample is partly a consequence of the good sensitivity ros to high-energy emission by *Fermi*-LAT, whereas self-vetoing in *EGRET* reduced its effective area to rho photons with energies $\gtrsim 5$ GeV(Thompson et al. 1993). Consequently, dim hard-spectrum sources run are favored to be detected with the *Fermi*-LAT compared to *EGRET*. A clear separation between the spectral indices of FSRQs and BL Lacs is found in the *Fermi*r13 LAT data (Fig. 9), with mean photon indices of $\Gamma = 2.40\pm0.17$ (rms) for FSRQs and $\Gamma = 1.99\pm0.22$ r14 (rms) for BL Lac objects. A KS test gives a probability of 2×10^{-12} for the two index samples to be r15 drawn from the same parent distribution. Moreover, the SEDs of bright flaring blazars in the cases r16 of 3C 454.3 and AO 0235+164 show a spectral softening at $E \gtrsim 2$ GeV. If this behavior persists r17 in weaker FSRQs, then an even greater fraction of BL Lac objects will be found in *Fermi*-LAT r18 analyses over longer times, because signal-to-noise detection significance for weak hard-spectrum r19 sources becomes better than for weak soft-spectrum sources due to the reduced background at r20 higher photon energies.

Another reason for the larger fraction of BL Lac objects in the *Fermi*-LAT blazars could be r22 related to the redshift distribution of the bright AGNs. The BL Lac objects are dominated by r23 low-redshift, $z \leq 0.5$ blazars, with a tail extending to $z \approx 1$, whereas the FSRQs have a broad r24 distribution peaking at $z \approx 1$ and extending to $z \approx 3$ (see Fig. 15 and Fig. 16). These distributions r25 are similar to the distribution of *EGRET* blazars (Mukherjee et al. 1997). Because the peak of the r26 *EGRET* FSRQ redshift distribution is already at $z \approx 1$, detection of higher redshift FSRQs with r27 the more sensitive *Fermi*-LAT would be impeded by cosmological factors that strongly reduce the r28 received fluxes. Moreover, the period of dominant AGN activity was probably at $z \approx 1$ or 2. The r29 increased sensitivity for the BL Lac objects with *Fermi*-LAT, on the other hand, allows it to probe r30 beyond the low-redshift population of BL Lac objects detected with *EGRET* where the detectable r31 volume is still rapidly increasing with z. The likelihood of detecting $z \approx 1$ BL Lac objects does r32 depend, however, on their evolution.

The simplest index of population evolution is the V/V_{MAX} test. We found $\langle V/V_{MAX} \rangle =$ 734 0.43±0.055 for the BL Lac objects with redshift in the LBAS (Table 8), so that the BL Lac objects 735 are within $\approx 1\sigma$ of showing no evidence for evolution. For the FSRQs in the LBAS, by contrast, we 736 found $\langle V/V_{MAX} \rangle = 0.64 \pm 0.04$, so that the FSRQs exhibit strong positive evolution. The strong 737 positive evolution of FSRQs and weakly negative or no evolution of BL Lac objects in the LBAS is 738 contrary, however, to our reasoning that population evolution of the lower redshift BL Lac objects 739 explains the larger fraction of BL Lacs in the LBAS compared with the BL Lac fraction observed 740 with EGRET. As indicated by the indices of the log $N - \log S$ (eq. 6 and Table 7), which show 741 much weaker evidence for evolution than given by the V/V_{MAX} test, the actual situation may be 742 more complicated and depend on both density and luminosity evolution.

The BL Lac objects are found to display systematically harder spectra, with νF_{ν} spectra rising 744 at GeV energies, compared to the powerful FSRQs where the peak of the νF_{ν} spectrum is at photon 745 energies $\leq 100 \text{ MeV} - \text{GeV}$. This is generally attributed to a different dominant radiation process; 746 self-Compton scattering of the jet electron's synchrotron emission in the case of BL Lac objects, 747 and Compton scattering of external radiation fields in the case of FSRQs if leptonic processes 748 dominate the radiation output (recently reviewed in Böttcher 2007). The excellent sensitivity and 749 full-sky coverage of the *Fermi* LAT is, for the first time, giving us broadband evolving SEDs from 750 the radio to the γ -ray regime in sources like 3C 454.3, PKS 2155-304, and others that will require ⁷⁵¹ detailed spectral modeling to assess the relative importance of self-Compton and external Compton ⁷⁵² scattering processes in the different blazar classes.

Such results will be important to determine whether FSRQs and BL Lac objects may have rs4 a direct evolutionary relationship, or instead represent separate unrelated tracks of supermassive rs5 black hole fueling and growth. A scenario whereby BL Lac objects are the late stages of FSRQs, rs6 as the gas and dust produced in a galaxy merger or tidal interaction fuels the supermassive black rs7 hole (Böttcher & Dermer 2002; Cavaliere & D'Elia 2002), provides a framework to understand the rs8 blazar phenomenology and makes definite predictions about the relative black hole masses in the rs9 two classes. The more abundant scattered radiation and fueling in the evolution from FSRQ to BL r60 Lac object would then lead to a blazar sequence like behavior (Fossati et al. 1998; Ghisellini et al. r61 1998) if the amount of accreting matter controls black hole power and the surrounding radiation r62 field.

It is still premature to compare the number of blazars in this bright source list with prelaunch r64 predictions (Mücke & Pohl 2000; Stecker & Salamon 2001; Narumoto & Totani 2006; Dermer 2007; r65 Inoue & Totani 2008) made on the basis of differing assumptions, to sensitivities $\approx 5\sigma$ rather than r66 10 σ , and over different spans of time. Nevertheless, nearly complete surveys with far more sources r67 than detected with *EGRET* are now available for calculating luminosity and number evolution, r68 with implications that can be compared with results from the *EGRET* era.

This study can be used to examine the observational basis for assuming an underlying radio/ γ ray connection used to calculate the blazar contribution to the γ -ray background (Stecker & Salamon radio). Figure 14 shows that except for a (at most) weak correlation of the brightest γ -ray blazars with the most radio-bright blazars, the γ -ray and radio fluxes display a large amount of scatter. Whether a stronger correlation can be found by radio fluxes of the *Fermi* mission, we find that the bright sources can already comprise about 7% of the radio fluxe extragalactic γ -ray background flux measured with *EGRET* (Sreekumar et al. 1998).

⁷⁷⁷ We conclude this study by noting that the *Fermi*-LAT results imply the non-thermal luminosity ⁷⁷⁸ density of AGNs on various size scales. A γ -ray blazar makes a contribution to the non-thermal ⁷⁷⁹ emissivity $\propto L/V$ in terms of γ -ray luminosity L_{γ} and injection volume V derived from redshift. The ⁷⁸⁰ *Fermi*-LAT results from Table 2 show that BL Lac objects provide local emissivities $\ell_{BL} \gtrsim 10^{31}$ W ⁷⁸¹ Mpc⁻³, whereas FSRQs have $\ell_{FSRQ} \approx 10^{30}$ W Mpc⁻³. Cen A, because of its proximity at $d \approx 3.5$ ⁷⁸² Mpc, dominates the non-thermal luminosity, with $\ell_{CenA} \approx 3 \times 10^{31}$ W Mpc⁻³ (Dermer et al. ⁷⁸³ 2008). Sources of UHECRs must have a luminosity density within the GZK radius, ≈ 100 Mpc, ⁷⁸⁴ of $\ell_{UHECR} \approx 3 \times 10^{29}$ W Mpc⁻³ or $\ell_{UHECR} \approx 10^{44}$ ergs Mpc⁻³ yr⁻¹ (Waxman & Bahcall 1999). ⁷⁸⁵ To have sufficient emissivity within the GZK radius, if AGNs are the sources of the UHECRs ⁷⁸⁶ (The Pierre AUGER Collaboration et al. 2007), the *Fermi*-LAT results would therefore seem to ⁷⁸⁷ favor BL Lac objects over FSRQs as the source of the UHECRs.

9. Summary

We have presented a list of 116 bright, $\gtrsim 10\sigma$ sources at $|b| \ge 10^{\circ}$ taken from the list of bright row sources (Abdo et al. 2009c) observed with the *Fermi*-LAT in its initial three-month observing period row extending from August 4 to October 30 of 2008. Of these sources, 106 are associated with blazars row with high confidence and compose the LBAS. The number of low-confidence AGN associations is row 11 (one source having two possible associations - one high and one low confidence). At $|b| \ge 10^{\circ}$, row 5 sources out of a total of 125 non-pulsar sources remain unidentified. Two of the AGNs are row 5 associated with radio galaxies. The purpose of this work is to present the key properties of the row AGN population of this bright GeV source list. The main results are summarized as follows:

- With a ~ 90% success rate from correlating the bright gamma-ray source list with AGN radio
 catalogs (CRATES/CGRABS, BZCAT) the bright extragalactic gamma-ray sky continues to
 be dominated by radio-bright AGNs.
- 2. The number of HBLs in the LBAS detected at GeV energies (even when not flaring) has
 risen to at least 10 (out of 42 BL Lacs) as compared to one (out of 14 BL Lacs) detected by *EGRET*. Seven LBAS HBLs are known TeV-blazars.
- 3. Only $\sim 30\%$ of the bright Fermi AGN list were also detected by *EGRET*. This may be a consequence of the duty cycle and variability behavior of GeV blazars.
- 4. BL Lac objects make up almost half of the bright Fermi AGN sample (consisting of 57 FSRQs, 42 BL Lac objects, 2 radio galaxies, and only 5 AGN remain unclassified), while the BL Lac fraction in the 3EG catalog was only $\sim 23\%$. This feature most probably arises from the different instrument responses of the LAT and *EGRET*.
- 5. The mean flux distribution of the *Fermi* AGN remains similar to the corresponding one based on the *EGRET* sample, while the peak flux distributions differ appreciably.
- 6. We find a spectral separation between BL Lacs and FSRQs in the GeV gamma-ray band with FSRQs having significantly softer spectra than BL Lac objects. This confirms earlier indications for the existence of spectrally distinct populations in the *EGRET* blazar sample. The average photon index is 1.99 ± 0.22 (rms) for BL Lacs, with a tendency of HBLs displaying even harder spectra, and 2.40 ± 0.17 (rms) for FSRQs. A KS test gives a probability of 2×10^{-12} for the two index samples to be drawn from the same parent distribution.
- 7. Fermi FSRQs in the bright source list are on average more luminous and more distant than the Fermi-detected BL Lac objects in that list. I.e., FSRQs exhibit a broad redshift distribution, starting with z = 0.158 (3C 273), peaking at $z \approx 1$ and extending up to $z \approx 3$ while BL Lacs are mostly found in the ~ 0.1 redshift bin with a tail extending up to $z \approx 1$. No significant relation between the gamma-ray photon index and redshift is found within each source class, in agreement with corresponding studies based on the EGRET AGN samples.

788

8. The peak gamma-ray flux is at best only weakly related to the 8.4 GHz radio flux, with the
brightest gamma-ray AGNs having the largest radio flux densities.

9. Using mean fluxes the Log N-Log S distribution of all the bright sources (except the pulsars) appears compatible with an Euclidean distribution without any breaks. This is also true within 1σ for the source counts distributions of the FSRQ and BL Lac sample separately. Surface densities of 4.28 ± 0.72 sr⁻¹ and 1.01 ± 0.17 sr⁻¹ ($F_{100} \ge 10^{-7}$ ph cm⁻² s⁻¹) for FSRQs and BL Lacs, respectively, are reached.

10. The combined emission in the flux range $F_{100,\text{mean}} \approx (7-10) \times 10^{-8} \text{ph cm}^{-2} \text{ s}^{-1}$ observed from these individually resolved AGN during this three-month period already corresponds to $\sim 7\%$ of the *EGRET* detected extragalactic diffuse gamma-ray background.

11. A V/V_{max} analysis shows positive evolution at the 3 σ level for the bright *Fermi*-detected FSRQs with the most luminous FSRQs having an almost constant space density with redshift, while for the *Fermi*-detected BL Lacs no evolution within one σ is apparent.

12. The gamma-ray luminosity function of bright FSRQs can be described by a single power-law 836 with index ~ 2.5 and ~ 1.5 for the high (≥ 0.9) and low (≤ 0.9) redshift range, respectively, 837 while the BL Lac gamma-ray luminosity function follows a power law with index ~ 2.1 . The 838 space density of gamma-ray emitting BL Lacs of $\sim 190 \text{ Gpc}^{-3}$ above their limiting luminosity, 839 $\sim 3 \times 10^{44} \mathrm{erg s}^{-1}$, is a factor ~ 200 larger than for the *Fermi*-detected FSRQ population above 840 their limiting luminosity, $\sim 7 \times 10^{45}$ erg s⁻¹. Thus, within the *Fermi* bright AGN list BL Lacs 841 are intrinsically more numerous than FSRQs. Bright Fermi detected BL Lacs and FSRQs 842 display comparable cumulative number counts above $\sim 10^{47} \mathrm{erg s}^{-1}$, with BL Lacs being ~ 3 843 times more numerous than FSRQs. 844

These early results from the first three months of the science mission of the *Fermi Gamma ray* ⁸⁴⁶ Space Telescope demonstrate its exceptional capabilities to provide important new knowledge about ⁸⁴⁷ γ -ray emission from active galactic nuclei and blazars. As the *Fermi*-LAT data accumulate, many ⁸⁴⁸ more AGNs at lower flux levels will likely be detected- as well as flaring AGNs at brighter fluxes ⁸⁴⁹ than yet observed - helping to refine these results and improve our understanding of supermassive ⁸⁵⁰ black holes.

851

10. Acknowledgments

The *Fermi* LAT Collaboration acknowledges the generous support of a number of agencies and institutes that have supported the *Fermi* LAT Collaboration. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut ⁸⁵⁶ National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale ⁸⁵⁷ Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, ⁸⁵⁸ Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) ⁸⁵⁹ and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, ⁸⁶⁰ the Swedish Research Council and the Swedish National Space Board in Sweden.

Additional support for science analysis during the operations phase from the following agention and the K. A. Wallenberg Foundation in Sweden for providing a grant in support of a Royal Swedish Academy of Sciences Research fellowship for JC.

MA acknowledges N. Cappelluti for extensive discussion about the sky coverage.

866 Facilities: Fermi LAT.

867

REFERENCES

- 868 Abdo, A. A., et al. 2009a, ApJ, submitted LAT 3C454.3
- 869 2009b, ApJ, in preparation LAT NGC 1275
- 870 2009c, ApJ, submitted LAT Bright Source List
- ⁸⁷¹ Aharonian, F., et al. 2009, ApJ, submitted
- 872 Ajello, M., et al. 2009, ApJ, submitted
- ⁸⁷³ —. 2008, ApJ, 673, 96
- ⁸⁷⁴ Atwood, W. B., et al. 2009, ApJ, submitted, arXiv:astro-ph/0902.1089
- 875 Avni, Y. 1976, ApJ, 210, 642
- 876 Avni, Y., & Bahcall, J. N. 1980, ApJ, 235, 694
- 877 Beckmann, V., Engels, D., Bade, N., & Wucknitz, O. 2003, A&A, 401, 927
- 878 Bhattacharya, D., Sreekumar, P., & Mukherjee, R. 2008, ArXiv e-prints
- 879 Blandford, R. D., & Rees, M. J. 1978, in BL Lac Objects, ed. A. M. Wolfe, 328-341
- 880 Böttcher, M. 2007, Ap&SS, 309, 95
- ⁸⁸¹ Böttcher, M., & Dermer, C. D. 2002, ApJ, 564, 86
- 882 Cappelluti, N., et al. 2007, ApJS, 172, 341
- 883 Casandjian, J.-M., & Grenier, I. A. 2008, A&A, 489, 849

- ⁸⁸⁵ Ciprini, S., et al. 2007, in American Institute of Physics Conference Series, Vol. 921, The First
 ⁸⁸⁶ GLAST Symposium, ed. S. Ritz, P. Michelson, & C. A. Meegan, 546–547
- ⁸⁸⁷ Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick,
 J. J. 1998, AJ, 115, 1693
- 889 de Ruiter, H. R., Arp, H. C., & Willis, A. G. 1977, A&AS, 28, 211
- ⁸⁹⁰ della Ceca, R., Lamorani, G., Maccacaro, T., Wolter, A., Griffiths, R., Stocke, J. T., & Setti, G.
 ⁸⁹¹ 1994, ApJ, 430, 533
- ⁸⁹² Dermer, C. D. 2007, ApJ, 659, 958
- ⁸⁹³ Dermer, C. D., Razzaque, S., Finke, J. D., & Atoyan, A. 2008, ArXiv e-prints
- ⁸⁹⁴ Fichtel, C. E., et al. 1994, ApJS, 94, 551
- ⁸⁹⁵ Foschini, L., et al. 2005, A&A, 433, 515
- ⁸⁹⁶ Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998, MNRAS, 299, 433
- 897 Ghisellini, G., Celotti, A., Fossati, G., Maraschi, L., & Comastri, A. 1998, MNRAS, 301, 451
- 898 Giommi, P., Colafrancesco, S., Cavazzuti, E., Perri, M., & Pittori, C. 2006, A&A, 445, 843
- 899 Giovannini, G., Feretti, L., Gregorini, L., & Parma, P. 1988, A&A, 199, 73
- 900 Gregory, P. C., Scott, W. K., Douglas, K., & Condon, J. J. 1996, ApJS, 103, 427
- 901 Griffith, M. R., & Wright, A. E. 1993, AJ, 105, 1666
- 902 Hartman, R. C., et al. 1999, ApJS, 123, 79
- ⁹⁰³ Hasinger, G., Burg, R., Giacconi, R., Hartner, G., Schmidt, M., Trumper, J., & Zamorani, G. 1993,
 ⁹⁰⁴ A&A, 275, 1
- ⁹⁰⁵ Hasinger, G., Miyaji, T., & Schmidt, M. 2005, A&A, 441, 417
- 906 Healey, S. E., et al. 2008, ApJS, 175, 97
- ⁹⁰⁷ Healey, S. E., Romani, R. W., Taylor, G. B., Sadler, E. M., Ricci, R., Murphy, T., Ulvestad, J. S.,
 ⁹⁰⁸ & Winn, J. N. 2007, ApJS, 171, 61
- 909 Hogg, D. W. 1999, ArXiv Astrophysics e-prints
- 910 Inoue, Y., & Totani, T. 2008, ArXiv e-prints, submitted
- 911 Ivezić, Ž., et al. 2002, AJ, 124, 2364

- ⁹¹² Jorstad, S. G., Marscher, A. P., Mattox, J. R., Wehrle, A. E., Bloom, S. D., & Yurchenko, A. V.
 ⁹¹³ 2001, ApJS, 134, 181
- 914 Kellermann, K. I., et al. 2004, ApJ, 609, 539
- 915 Komatsu, E., et al. 2008, ArXiv e-prints
- 916 Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5
- ⁹¹⁷ Massaro, E., Giommi, P., Sclavi, S., Perri, M., Piranomonte, S., Leto, C., & Maselli, A. 2007, in ⁹¹⁸ American Institute of Physics Conference Series, Vol. 921, The First GLAST Symposium,
- ed. S. Ritz, P. Michelson, & C. A. Meegan, 349–350
- 920 Mattox, J. R., Hartman, R. C., & Reimer, O. 2001, ApJS, 135, 155
- Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson,
 J. G., & Sadler, E. M. 2003, MNRAS, 342, 1117
- 923 Mücke, A., & Pohl, M. 2000, MNRAS, 312, 177
- 924 Mücke, A., et al. 1997, A&A, 320, 33
- 925 Mukherjee, R., et al. 1997, ApJ, 490, 116
- ⁹²⁶ Mukherjee, R., Halpern, J., Mirabal, N., & Gotthelf, E. V. 2002, ApJ, 574, 693
- ⁹²⁷ Nandikotkur, G., Jahoda, K. M., Hartman, R. C., Mukherjee, R., Sreekumar, P., Böttcher, M.,
 ⁹²⁸ Sambruna, R. M., & Swank, J. H. 2007, ApJ, 657, 706
- 929 Narumoto, T., & Totani, T. 2006, ApJ, 643, 81
- 930 Padovani, P., Giommi, P., Landt, H., & Perlman, E. S. 2007, ApJ, 662, 182
- 931 Pittori, C., et al. 2008, A&A, submitted AGILE Catalog
- ⁹³² Pohl, M., Hartman, R. C., Jones, B. B., & Sreekumar, P. 1997, A&A, 326, 51
- ⁹³³ Rector, T. A., Stocke, J. T., Perlman, E. S., Morris, S. L., & Gioia, I. M. 2000, AJ, 120, 1626
- 934 Schmidt, M. 1968, ApJ, 151, 393
- 935 Silverman, J. D., et al. 2008, ApJ, 679, 118
- 936 Sowards-Emmerd, D., Romani, R. W., & Michelson, P. F. 2003, ApJ, 590, 109
- ⁹³⁷ Sreekumar, P., et al. 1998, ApJ, 494, 523
- ⁹³⁸ Sreekumar, P., Bertsch, D. L., Hartman, R. C., Nolan, P. L., & Thompson, D. J. 1999, Astroparticle
 ⁹³⁹ Physics, 11, 221

- 940 Starck, J.-L., & Pierre, M. 1998, A&AS, 128, 397
- 941 Stecker, F. W., & Salamon, M. H. 1996, ApJ, 464, 600
- Stecker, F. W., & Salamon, M. H. 2001, in American Institute of Physics Conference Series, Vol.
 587, Gamma 2001: Gamma-Ray Astrophysics, ed. S. Ritz, N. Gehrels, & C. R. Shrader,
 432-+
- 945 Sutherland, W., & Saunders, W. 1992, MNRAS, 259, 413
- ⁹⁴⁶ Tavani, M., et al. 2008, Nuclear Instruments and Methods in Physics Research A, 588, 52
- 947 The Pierre AUGER Collaboration, et al. 2007, Science, 318, 938
- 948 Thompson, D. J., et al. 1995, ApJS, 101, 259

949 —. 1993, ApJS, 86, 629

- 950 Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T. 2003, ApJ, 598, 886
- 951 Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
- ⁹⁵² Venters, T. M., & Pavlidou, V. 2007, ApJ, 666, 128
- 953 Voges, W., et al. 1999, A&A, 349, 389
- 954 Wall, J. V., Jackson, C. A., Shaver, P. A., Hook, I. M., & Kellermann, K. I. 2005, A&A, 434, 133
- 955 Waxman, E., & Bahcall, J. 1999, Phys. Rev. D, 59, 023002

This preprint was prepared with the AAS ${\rm IAT}_{\rm E}{\rm X}$ macros v5.2.

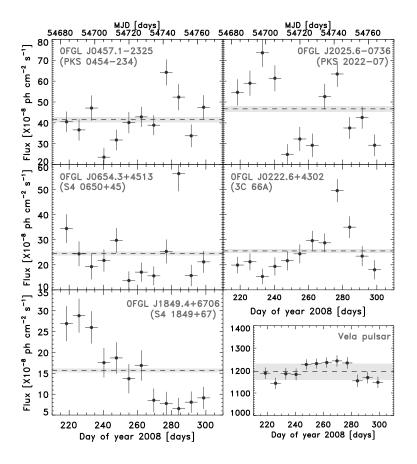


Fig. 1.— Examples of weekly light curves for five bright blazars detected by *Fermi*-LAT and the Vela light curve for comparison (flux unit: $\times 10^{-8}$ photons cm⁻² s–1, please note the different scales). The dashed line is the average value and the grey area shows the 3% systematic error we have adopted. Different flux variability amplitudes and timescales are clearly visible in the blazar light curves.

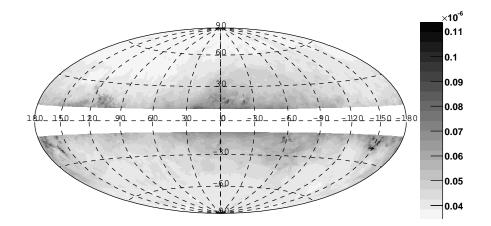


Fig. 2.— Flux limit [E>100 MeV] (ph cm⁻²s⁻¹) as a function of sky location (in galactic coordinates), for a photon index=2.2

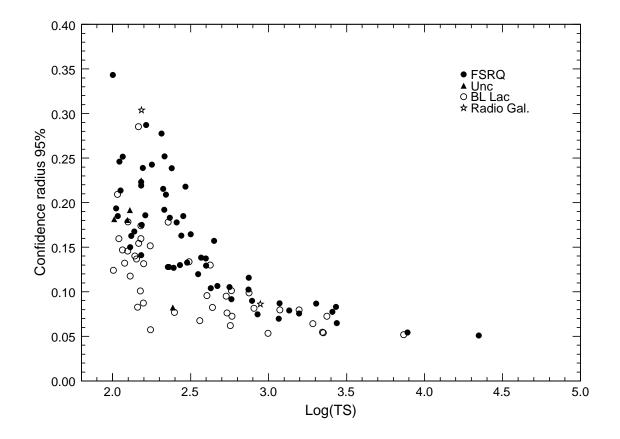


Fig. 3 - 95% error radius as a function of TS for the sources presented in this paper. FSRQs: closed circles, BL Lacs: open circles, Uncertain type: closed triangles, Radio galaxies: open stars.

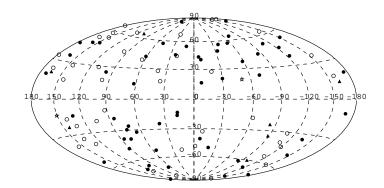


Fig. 4.— Location of the LBAS sources. FSRQs: closed circles, BL Lacs: open circles, Uncertain type: closed triangles, RG: open stars.

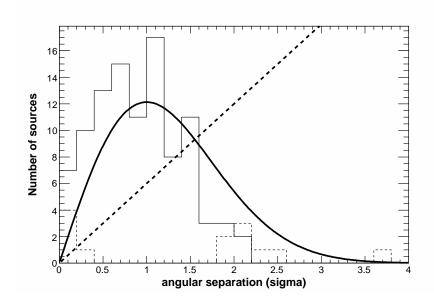


Fig. 5.— Normalized angular separation between the *Fermi*-LAT location and that of the counterpart. The solid (dashed) histogram corresponds to the sources with high-(low-) confidence associations. The solid curve corresponds to the expected distribution (χ^2 distribution with 2 d.o.f.) for real associations, the dashed one for accidental associations.

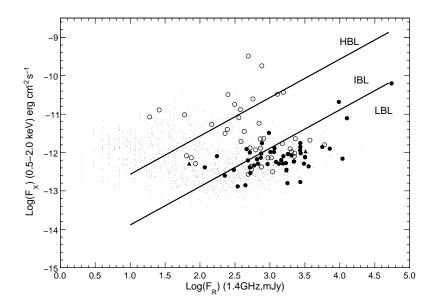


Fig. 6.— The X-ray (0.5 - 2.0 keV) vs radio flux density (1.4 GHz) plot of all X-ray detected blazars in the BZCAT catalog (small dots) and the *Fermi*-LAT detected blazars (BL Lacs: open circles, FSRQs: filled circles, blazars of uncertain type: triangles, radio galaxies: stars).

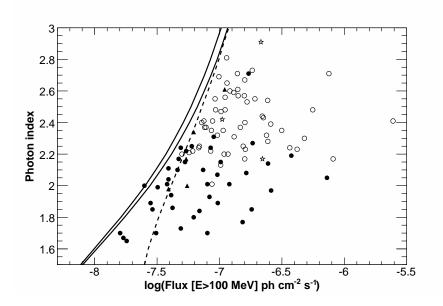


Fig. 7.— Flux [E>100 MeV] vs photon index for the 116 sources. FSRQs: closed circles, BL Lacs: open circles, Uncertain type: closed triangles, Radio galaxies: open stars. The solid curves represent the TS=100 limit estimated for two galactic latitudes b=20° and b=80°. The dashed curve represents the TS=100 limit for b=80° and 0.2 < E < 3 GeV.

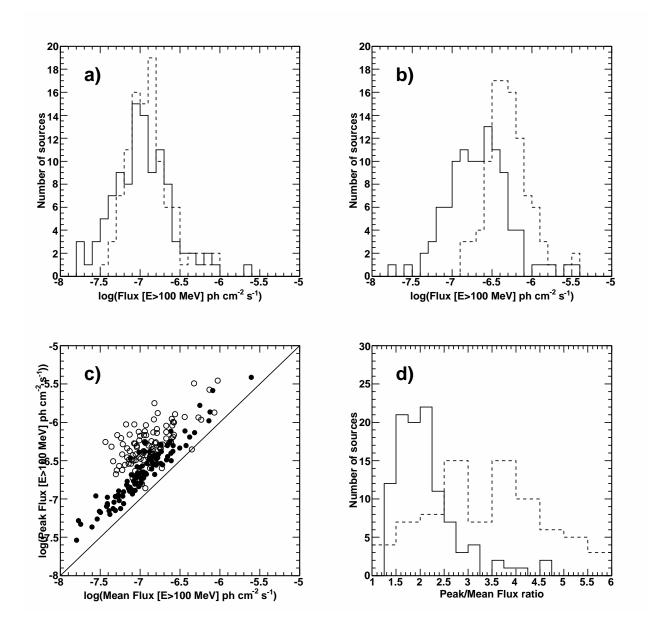


Fig. 8.— a) Comparison of mean flux distribution for blazars detected by *Fermi*-LAT (solid) and *EGRET* (dashed). b) same of as a), for the peak flux distribution. c) Peak flux as a function of mean flux, for the *Fermi*-LAT (closed circles) and *EGRET* (open circles) AGNs. d) same as a), for the peak/mean flux ratio.

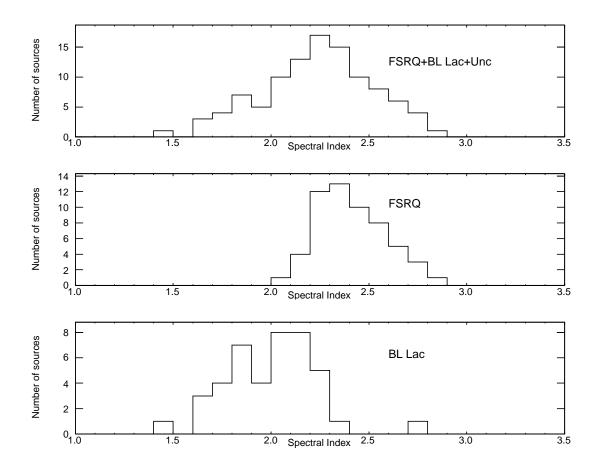


Fig. 9.— Photon index distributions for the LBAS blazars. Top: All sources. Middle: FSRQs. Bottom: BL Lacs.

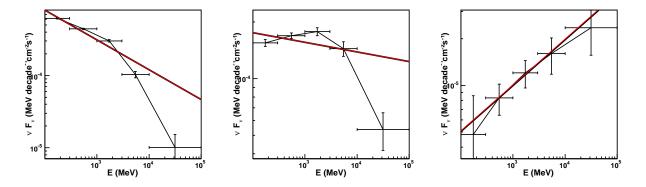


Fig. 10.— Gamma-ray SED of 3 bright blazars calculated in five energy bands, compared with the power law fitted over the whole energy range. Left: 3C454.3 (FSRQ), middle: AO 0235+164 (IBL), right: Mkn 501 (HBL)

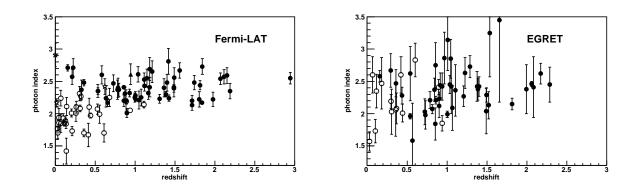


Fig. 11.— Left: LBAS photon index as a function of redshift. Same symbols as before. Right: same as left, for the *EGRET* sample.

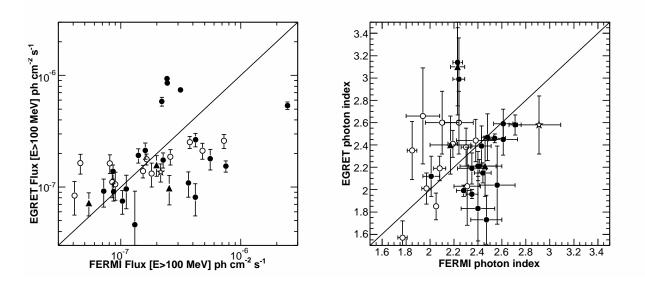


Fig. 12.— Left: *Fermi*-LAT vs *EGRET* mean flux for the 33 AGNs present in both samples FSRQs: closed circles, BL Lacs: open circles, Uncertain type: closed triangles. Right: same as left, for photon index.

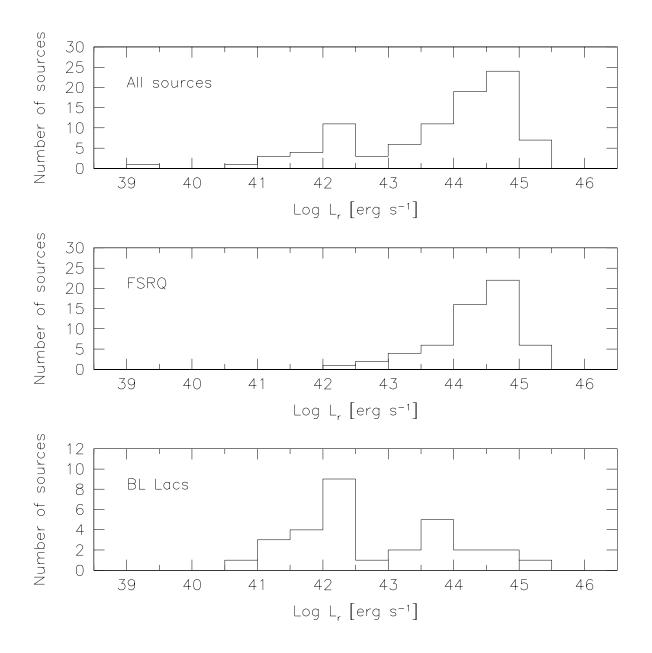


Fig. 13.— Histogram of the radio power distribution for LBAS sources, for all sources (upper panel), FSRQs (middle), and BL Lacs (bottom) only.

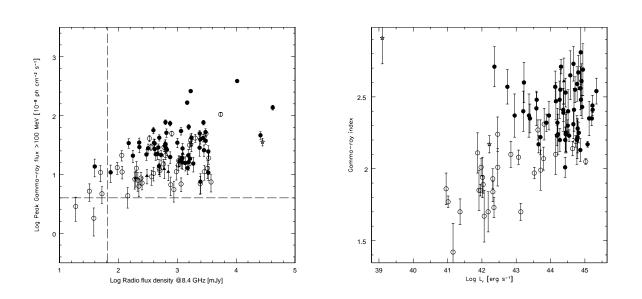


Fig. 14.— Radio vs. gamma-ray properties. Left: peak gamma-ray flux vs. radio flux density at 8.4 GHz; the dashed lines show the CRATES flux density limit and the typical LAT detection threshold. Right: gamma-ray photon index vs. radio luminosity.

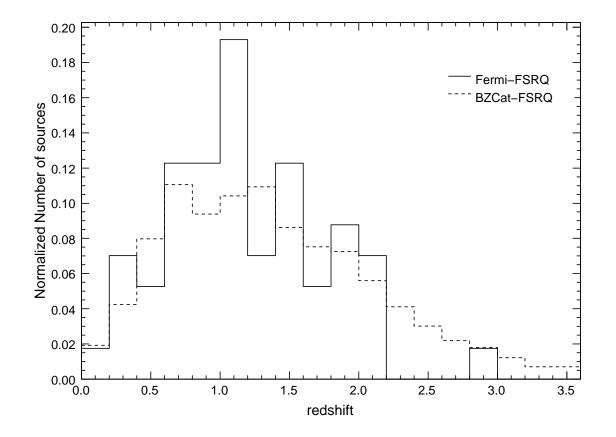


Fig. 15.— Redshift distribution for the FSRQs in the LBAS (solid) and in the BZCat catalog (dashed).

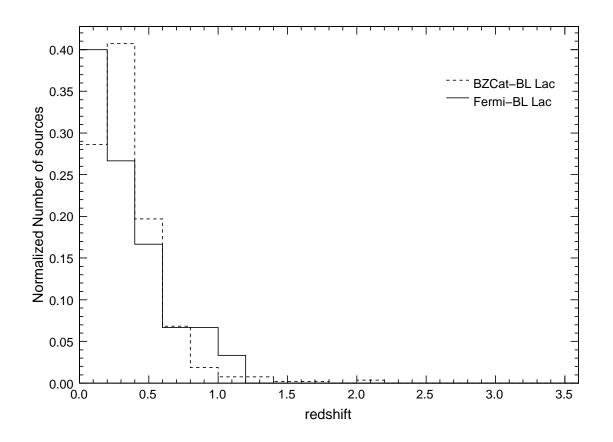


Fig. 16.— Redshift distribution for the BL Lacs in the LBAS (solid) and in the BZCat catalog (dashed).

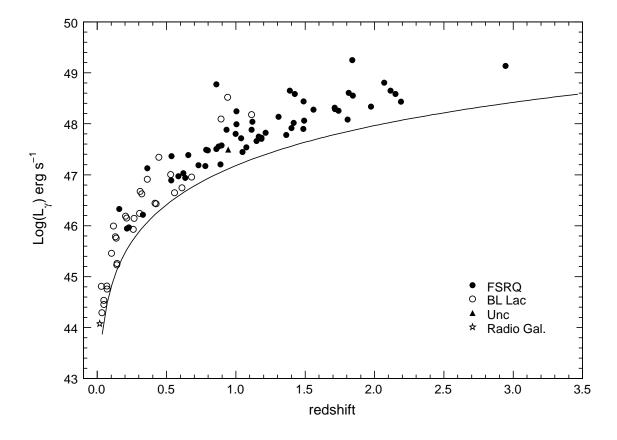


Fig. 17.— Gamma-ray Luminosity vs redshift for the LBAS. The solid line was drawn using a $F_{100} = 4 \times 10^{-8}$ ph cm⁻² s⁻¹ and a photon index of 2.2.

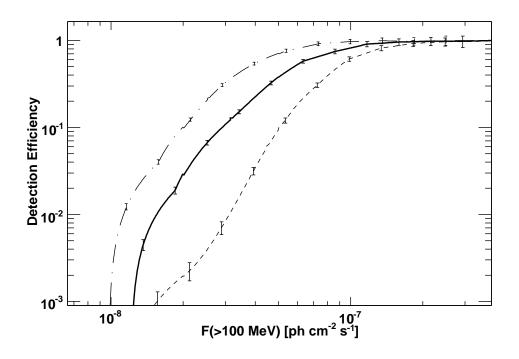


Fig. 18.— Detection efficiencies in the LAT $|\mathbf{b}| \ge 10^{\circ}$ survey as a function of flux. The solid line is for the entire blazar population while the dashed and long-dashed are for the FSRQs and BL Lacs respectively. The errors on the detection efficiency are due to the counting statistics in our Monte Carlo simulations.

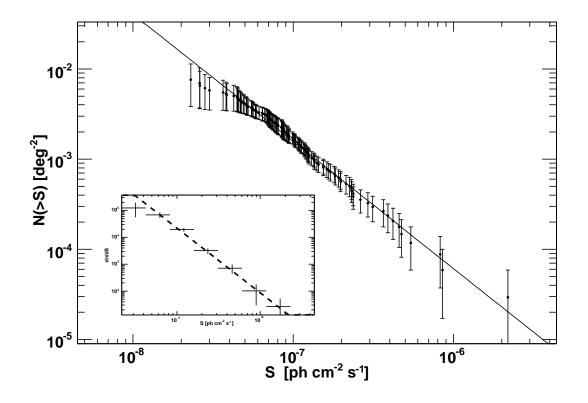


Fig. 19.— Source count distribution for the whole extragalactic population (excluding the pulsars). The dashed line is the best power-law fit to the $F(>100 \text{ MeV}) \ge 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ data. The inset shows the differential distribution.

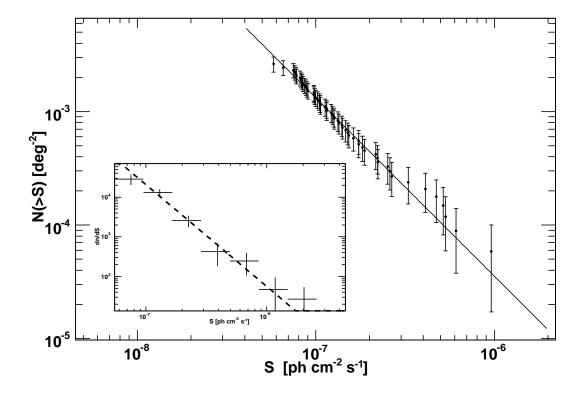


Fig. 20.— Source count distribution for FSRQs. The dashed line is the best power-law fit to the $F(>100 \text{ MeV}) \ge 7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ data. The inset shows the differential distribution.

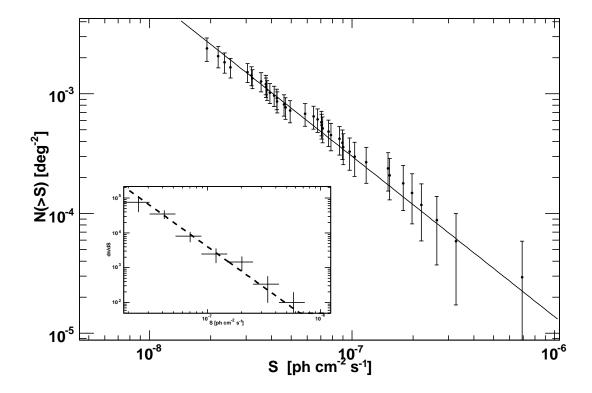


Fig. 21.— Source count distribution for BL Lacs. The dashed line is the best power-law fit to the $F(>100 \text{ MeV}) \ge 3 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$ data. The inset shows the differential distribution.

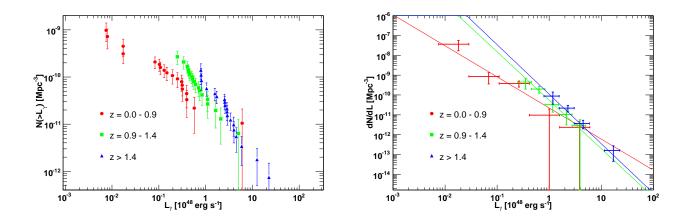


Fig. 22.— Luminosity functions of FSRQs in bins of redshift. The cumulative and differential distributions are shown, respectively, on the left and on the right panel. The (color-coded) solid lines are the ML fits to the 3 different datasets using a simple power law to model the GLF.

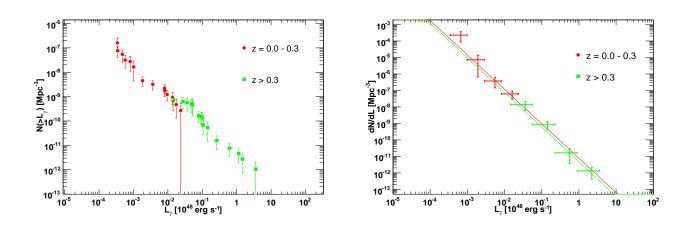


Fig. 23.— Luminosity functions of BL Lacs in bins of redshift. The cumulative and differential distributions are shown, respectively, on the left and on the right panel. The (color-coded) solid lines are the ML fits to the 2 different datasets using a simple power law to model the GLF.

Table 1. The high-confidence association Bright AGN List

	FoM			gtsrcid		-		
LAT Name	Source Name	FoM	Prob.	Source Name	Prob.	Other Names	z	Class
0FGL J0017.4-0503	CGRaBS J0017-0512	16.20	0.93	CGRaBS J0017-0512	0.92		0.227	FSRQ
0FGL J0033.6-1921				BZB J0033-1921	0.99	KUV 00311-1938	0.610	BLLac
0FGL J0050.5-0928	CGRaBS J0050-0929	$61.01 \\ 42.95$		CRATES J0050-0929	0.99	PKS 0048-097	1.075	BLLac
0FGL J0051.1-0647 0FGL J0112.1+2247	CGRaBS J0051-0650 CGRaBS J0112+2244	42.95 48.96	$0.98 \\ 0.98$	CRATES J0051-0650 S2 0109+22	$0.99 \\ 1.00$	PKS 0048-071 S2 0109+22	$1.975 \\ 0.265$	FSRQ BLLac
0FGL J0118.7-2139	CGRaBS J0118-2141	35.02	0.97	CGRaBS J0118-2141	0.99	PKS 0116-219	1.165	FSRQ
0FGL J0120.5 -2703	CGRaBS J0120 -2701	60.25	1.00	PKS $0118 - 272$	1.00	PKS $0118 - 272$	0.557	BLLac
0FGL J0136.6+3903	BZB J0136+3905	12.45		B3 0133+388	1.00	B3 0133+388		BLLac
0FGL J0137.1+4751	CGRaBS J0136+4751	52.21		CGRaBS J0136+4751	0.99	DA 55	0.859	FSRQ
0FGL J0144.5+2709 0FGL J0145.1-2728	CRATES J0144+2705 CGRaBS J0145-2733	$30.93 \\ 37.41$	0.96	CRATES J0144+2705 CGRaBS J0145-2733	$0.58 \\ 0.96$	TXS 0141+268 PKS 0142-278		BLLac FSRQ
0FGL J0204.8-1704	CGRaBS J0204-1701	55.22	0.99	CGRaBS J0204-1701	0.96	PKS 0202-17		FSRQ
0FGL J0210.8-5100	CGRaBS J0210-5101	69.87		PKS 0208-512	1.00	PKS 0208-512	1.003	-
0FGL J0217.8 $+0146$	CGRaBS J0217 $+0144$	52.67	0.99	CGRaBS J0217 $+0144$	1.00	PKS 0215+015	1.715	FSRQ
0FGL J0220.9+3607	CGRaBS J0221+3556	7.66	0.89	CGRaBS J0221+3556	0.95	B2 0218+35	0.944	Unc***
0FGL J0222.6+4302	BZB J0222+4302	23.18		3C 66A	1.00	3C 66A		BLLac
0FGL J0229.5-3640 0FGL J0238.6+1636	BZQ J0229-3643 CGRaBS J0238+1636	$29.20 \\ 60.54$		BZQJ0229-3643 CGRaBS J0238+1636	$0.94 \\ 1.00$	PKS 0227-369 AO 0235+164	$2.115 \\ 0.940$	FSRQ BLLac
0FGL J0245.6-4656	CRATES J0246-4651	23.23	0.95	CRATES J0238+1050	0.54	PKS 0244-470	0.940	Unc***
0FGL J0303.7-2410	CRATES $J0303-2407$	9.32	0.90	PKS 0301-243	1.00	PKS 0301-243	0.260	BLLac
0FGL J0320.0+4131	${\rm CGRaBS~J0319{+}4130}$	33.67		0316 + 413	1.00	NGC 1275	0.018	\mathbf{RG}
0FGL J0334.1-4006	CGRaBS J0334-4008		1.00	PKS 0332-403	1.00	PKS 0332-403		BLLac
0FGL J0349.8-2102 0FGL J0428.7-3755	CGRaBS J0349-2102	$47.40 \\ 54.09$	0.98	CGRaBS J0349-2102	$0.99 \\ 1.00$	PKS 0347-211 PKS 0426-380		FSRQ
0FGL J0428.7-3755 0FGL J0449.7-4348	CGRaBS J0428-3756 CRATES J0449-4350	54.09 5.52	$0.99 \\ 0.81$	CGRaBS J0428-3756 PKS 0447-439	1.00	PKS 0420-380 PKS 0447-439		BLLac BLLac
0FGL J0457.1-2325	CGRaBS J0457-2324	35.74		CGRaBS J0457-2324	1.00	PKS 0454-234		FSRQ
0FGL J0507.9+6739	BZB J0507+6737	4.74	0.76	1ES 0502 + 675	1.00	1 ES 0502 + 675	0.416	BLLac
0FGL J0516.2 -6200	CGRaBS J0516 -6207	12.04		CGRaBS J0516 -6207	0.94	PKS $0516 - 621$		Unc***
0FGL J0531.0+1331	CGRaBS J0530+1331		1.00	CRATES J0530+1331	1.00	PKS 0528+134	2.070	FSRQ
0FGL J0538.8-4403 0FGL J0654.3+4513	CRATES J0538-4405 CGRaBS J0654+4514	$53.80 \\ 42.13$	$0.99 \\ 0.98$	BZBJ0538-4405 CGRaBS J0654+4514	$0.99 \\ 1.00$	PKS 0537-441 B3 0650+453	$0.892 \\ 0.933$	BLLac FSRQ
0FGL J0654.3+5042	CGRaBS $J0654+5042$	49.98	0.98	CGRaBS $J0654+5042$	1.00			Unc***
0FGL J0700.0-6611	CRATES J0700-6610	33.82	0.97	CRATES J0700-6610	0.64	PKS 0700-661		Unc***
0FGL J0712.9 $+5034$	CGRaBS J0712+5033	44.20	0.98	CGRaBS J0712 $+5033$	0.99			BLLac
0FGL J0714.2+1934	CLASS J0713+1935	20.54						FSRQ
0FGL J0719.4+3302	CRATES J0719+3307		0.92	BZUJ0719+3307 CRATES J0721+7120	0.89	TXS 0716+332		FSRQ
0FGL J0722.0+7120 0FGL J0738.2+1738	CGRaBS J0721+7120 CGRaBS J0738+1742	$\frac{66.40}{25.45}$	$1.00 \\ 0.95$	PKS 0735+17	$1.00 \\ 1.00$	S5 0716+71 PKS 0735+178		BLLac BLLac
0FGL J0818.3+4222	CGRaBS J0818+4222	61.26	1.00	OJ 425	1.00	OJ 425		BLLac
0FGL J0824.9+5551	CGRaBS J0824+5552	57.80	0.99	CGRaBS J0824 $+5552$	0.98	TXS 0820+560		FSRQ
0FGL J0855.4+2009	CGRaBS J0854+2006	8.67	0.90	OJ 287	0.99	OJ 287		BLLac
0FGL J0921.2+4437	CGRaBS J0920+4441	13.49	0.92	CGRaBS J0920+4441	0.95	RGB J0920+446		FSRQ
0FGL J0948.3+0019 0FGL J0957.6+5522	CGRaBS J0948+0022 CRATES J0957+5522	$18.64 \\ 50.91$	0.93 0.99	CGRaBS J0948+0022 BZQJ0957+5522	$0.94 \\ 0.96$	PMN J0948+0022 4C +55.17		FSRQ FSRQ
0FGL J1012.9+2435	CRATES J1012+2439	13.63	0.93			40 -00.17		FSRQ
0FGL J1015.2+4927	CGRaBS J1015+4926	18.06	0.93	1ES 1011+496	1.00	1ES 1011+496		BLLac
0FGL J1015.9 $+0515$	CRATES J1016 $+0513$	28.86	0.96	CRATES J1016 $+0513$	0.78	PMN J1016 $+0512$		\mathbf{FSRQ}
0FGL J1034.0+6051	CGRaBS J1033+6051	52.57	0.99	CGRaBS J1033+6051	0.98	S4 1030+61		FSRQ
0FGL J1053.7+4926 0FGL J1054 5+2212	BZB J1053+4929 CLASS J1054+2210	11.55 16.20	0.91	MS 1050.7+4946	1.00	MS 1050.7+4946	0.140	BLLac BLLac
0FGL J1054.5+2212 0FGL J1057.8+0138	CLASS J1054+2210 CGRaBS J1058+0133	$16.20 \\ 3.71$	$0.93 \\ 0.68$	CGRaBS J1058+0133	0.93	PKS 1055+018	0.888	BLLac FSRQ
0FGL J1057.8+0138 0FGL J1058.9+5629	CGRaBS J1058+5628	24.66	0.08	RXS J10586+5628	1.00	RXS J10586+5628		BLLac
0FGL J1100.2-8000	CGRaBS J1058-8003	53.65	0.99	CGRaBS J1058-8003	0.99	PKS 1057-79		BLLac
0FGL J1104.5+3811	CGRaBS J1104+3812	35.10		Mrk 421	1.00	Mrk 421		BLLac
0FGL J1129.8-1443	CRATES J1130-1449	27.54		BZQ J1130-1449	0.84	PKS 1127-14		FSRQ
0FGL J1146.7-3808	CGRaBS J1147-3812	45.04		CGRaBS J1147-3812	0.99	PKS 1144-379		FSRQ
0FGL J1159.2+2912 0FGL J1218.0+3006	CGRaBS J1159+2914 CGRaBS J1217+3007	$39.38 \\ 31.80$		CGRaBS J1159+2914 B2 1215+30	$0.98 \\ 1.00$	4C 29.45 B2 1215+30		FSRQ BLLac
0FGL J1221.7+2814	CGRaBS J1217+3007 CGRaBS J1221+2813	36.82		W Com	1.00	W Com		BLLac
0FGL J1229.1+0202	CGRaBS J1229+0203	73.53		3C 273	1.00	3C 273		FSRQ
$0 {\rm FGL} ~ {\rm J}1246.6\!-\!2544$	$\rm CGRaBS~J1246{-}2547$	43.45		CGRaBS J1246 -2547	0.99	PKS $1244 - 255$	0.635	FSRQ
0FGL J1253.4+5300	CRATES J1253+5301	43.34		S4 1250+53	1.00	S4 1250+53		BLLac
0FGL J1256.1-0547	CGRaBS J1256-0547 CGRaBS J1310+3220	71.21		3C279	1.00	3C 279		FSRQ
UFGL J1310.0+3220	UGRABS J1310+3220	99.91	0.99	CGRaBS J1310+3220	0.99	B2 1308+32	0.997	FSRQ

Table 1—Continued

	FoM			gtsrcid				
LAT Name	Source Name	FoM	Prob.	Source Name	Prob.	Other Names	z	Class
0FGL J1325.4-4303	BZU J1325-4301	75.23	1.00	NGC 5128	1.00	NGC 5128, Cen A	0.002	RG
0FGL J1331.7-0506	CGRaBS J1332 - 0509	44.64	0.98	CGRaBS J1332-0509	0.93	PKS 1329-049	2.150	FSRQ
0FGL J1333.3+5058	CLASS J1333+5057	21.52	0.94					FSRQ
0FGL J1355.0-1044	CRATES J1354-1041	22.52	0.94	BZUJ1354-1041	0.84	PKS 1352-104		FSRQ
0FGL J1427.1+2347	CRATES J1427+2347	19.69	0.94	PKS 1424+240	1.00	PKS 1424+240	• • •	BLLac
0FGL J1457.6-3538	CGRaBS J1457-3539	26.03	0.95	CGRaBS J1457-3539	0.99	PKS 1454-354		FSRQ
0FGL J1504.4+1030	CGRaBS J1504+1029	48.85	0.98	CGRaBS J1504+1029	1.00	PKS 1502+106		FSRQ
0FGL J1511.2-0536	PKS 1508-05	10.27		BZQJ1510-0543	0.73	PKS 1508-05		FSRQ
0FGL J1512.7-0905	PKS 1510-08		1.00	BZQJ1512-0905	0.98	PKS 1510-08		FSRQ
0FGL J1517.9-2423	CGRaBS J1517-2422	19.18	0.94	AP Lib	$1.00 \\ 1.00$	AP Lib		BLLac
0FGL J1522.2+3143 0FGL J1543.1+6130	CGRaBS J1522+3144 CRATES J1542+6129	$51.06 \\ 45.22$	$0.99 \\ 0.98$	CGRaBS J1522+3144 RXS J15429+6129	1.00	TXS 1520+319 RXS J15429+6129	1.487	FSRQ BLLac
0FGL J1553.4+1255	CRATES J1553+1256	45.22 26.38	0.98	PKS 1551+130	0.85	PKS 1551+130		FSRQ
0FGL J1555.8+1110	CGRaBS J1555+1111	44.23	0.95	PG 1553+11	1.00	PG 1553+11		BLLac
0FGL J1625.8-2527	CGRaBS $J1625-2527$	56.82	0.98	PKS 1622-253	0.99	PKS 1622-253		FSRQ
0FGL J1635.2+3809	CGRaBS J1635+3808	54.10	0.99	CRATESJ1635+3808	0.99	4C +38.41		FSRQ
0FGL J1653.9+3946	CGRaBS J1653+3945	59.08	0.99	Mrk 501	1.00	Mrk 501		BLLac
0FGL J1719.3+1746	CGRaBS J1719+1745	40.87	0.98	PKS 1717+177	1.00	PKS 1717+177		BLLac
0FGL J1751.5+0935	CGRaBS J1751+0939	19.73	0.94	CGRaBS J1751+0939	0.99	OT 081		BLLac
0FGL J1802.2+7827	CGRaBS J1800+7828	28.07	0.96	CGRaBS J1800+7828	0.99	S5 1803+78	0.680	BLLac
0FGL J1847.8+3223	CGRaBS J1848+3219	12.76	0.92	CGRaBS J1848+3219	0.94	TXS 1846+322	0.798	FSRQ
0FGL J1849.4+6706	CGRaBS J1849+6705	53.89	0.99	CGRaBS J1849+6705	1.00	S4 1849+67	0.657	FSRQ
0FGL J1911.2-2011	CGRaBS J1911-2006	23.51	0.95	CGRaBS J1911-2006	0.97	PKS 1908-201	1.119	FSRQ
0FGL J1923.3-2101	CGRaBS J1923 -2104	37.72	0.97	CGRaBS J1923-2104	0.97	TXS 1920-211	0.874	FSRQ
0FGL J2000.2+6506	CGRaBS J1959 $+6508$	19.12	0.94	1ES 1959+650	1.00	1ES 1959+650	0.047	BLLac
0FGL J2009.4 -4850	CGRaBS J2009 - 4849	72.13	1.00	PKS 2005-489	1.00	PKS 2005-489	0.071	BLLac
0FGL J2025.6 -0736	CRATES $J2025 - 0735$	42.71	0.98	BZQJ2025 - 0735	0.98	PKS 2022-07		FSRQ
0FGL J2056.1-4715	CGRaBS J2056-4714		1.00	CRATES J2055-4716	1.00	PKS 2052-47		FSRQ
0FGL J2139.4-4238	CRATES J2139-4235		0.92	MH 2136-428	1.00	MH 2136-428		BLLac
0FGL J2143.2+1741	CGRaBS J2143+1743	36.88		CGRaBS J2143+1743	0.96	OX 169		FSRQ
0FGL J2147.1+0931	CGRaBS J2147+0929	53.97	0.99	CGRaBS J2147+0929	0.99	PKS 2144+092		FSRQ
0FGL J2157.5+3125	CGRaBS J2157+3127	54.48	0.99	CGRaBS J2157+3127	0.97	B2 2155+31		FSRQ
0FGL J2158.8-3014	CGRaBS J2158-3013	54.87		CGRaBS J2158-3013	1.00	PKS 2155-304		BLLac
0FGL J2202.4+4217	BZB J2202+4216	45.62	0.98	BZB J2139-4239	1.00	BL Lacertae		BLLac
0FGL J2203.2+1731	CGRaBS J2203+1725	23.91		CGRaBS J2203+1725	0.93	PKS 2201+171		FSRQ
0FGL J2207.0-5347	CGRaBS J2207-5346	39.56	0.97	CGRaBS J2207-5346	0.99	PKS 2204-54		FSRQ
0FGL J2229.8-0829	CGRaBS J2229-0832	42.99	0.98	CGRaBS J2229-0832	0.99	PHL 5225		FSRQ
0FGL J2232.4+1141	BZQ J2232+1143	45.97		BZQ J2232+1143	1.00	CTA 102		FSRQ
0FGL J2254.0+1609	CGRaBS J2253+1608	$70.34 \\ 29.25$	1.00 0.96	CGRaBS J2253+1608	$1.00 \\ 1.00$	3C 454.3	0.859	FSRQ BLLac
0FGL J2325.3+3959	CRATES J2325+3957 CGRaBS J2327+0940	29.25 21.12	0.96 0.94	B3 2322+396 CGRaBS J2327+0940	$1.00 \\ 0.93$	B3 2322+396 PKS 2325+093		FSRQ
0FGL J2327.3+0947 0FGL J2345.5-1559	CGRaBS $J_{2327+0940}$ CGRaBS $J_{2345-1555}$	30.19		CGRaBS J2327+0940 CGRaBS J2345-1555	0.93	PKS 2325+093 PMN J2345-1555		FSRQ
01 GL 52545.5-1559	OGITADS 32345-1555	30.19	0.90	OGRab5 J2545-1555	0.95	1 1010 32343-1333	0.021	1.2102

*** All these source have a flat radio spectrum but there are no other data reported in literature which allow to classify them either as FSRQs or BL Lacs.

Table 2. The low-confidence association Bright AGN List

	FoM		gtsrcid	-				
LAT Name	Source Name	FoM	Prob.	Source Name	Prob.	Other Names	z	Class
0FGL J0100.2+0750	CRATES J0100+0745	5.12	0.78				0.000	Unc***
0FGL J0238.4+2855	CGRaBS J0237+2848	7.67	0.89	CGRaBS J0237+2848	0.88	B2 0234+28	1.213	FSRQ
0FGL J0407.6-3829	CRATES J0406-3826	3.00	0.61			PKS 0405-385	1.285	Unc***
0FGL J0412.9-5341	CRATES J0413-5332	1.92	0.46		0.00			Unc***
0FGL J0423.1-0112	CGRaBS J0423-0120	4.26	0.72	CRATESJ0423-0120	0.84	PKS 0420-014	0.915	FSRQ
0FGL J0909.7+0145	CGRaBS J0909+0200	4.16	0.71	PKS 0907+022	0.87	PKS 0907+022		BLLac
0FGL J1034.0+6051	CRATES J1032+6051	5.22	0.79				1.064	FSRQ
0FGL J1248.7+5811				PG 1246+586	0.86			BLLac
0FGL J1625.9-2423	CRATES J1627-2426	2.33	0.53					Unc***
0FGL J1641.4+3939	CLASS J1641+3935	6.22	0.85				0.539	FSRQ
0FGL J2017.2+0602	CLASS J2017+0603	7.03	0.88					Unc***

 *** All these sources have a flat radio spectrum but there are no other data reported in literature which allow to classify them either as FSRQs or BL Lacs.

Table 3. The $F\!ermi-{\rm LAT}~|b|>10^\circ$ Bright AGN List

LAT Name	R.A.	Dec	l	b	\sqrt{TS}	$\Gamma^{\mathbf{a}}$	$F_{100}{}^{\rm b}$	$F_{peak}{}^{\rm c}$	F_{25}^{d}	Va
0FGL J0017.4-0503	4.358	-5.054	101.273	-66.485	14.7	2.71 ± 0.14	13.9 ± 2.4	34.8 ± 6.5	12.1 ± 1.4	Т
0FGL J0033.6-1921	8.401	-19.360	94.215	-81.220	10.7	1.70 ± 0.14	1.6 ± 0.4	2.9 ± 1.3	$0.4 \pm 0.1^{\dagger}$	
0FGL J0050.5-0928	12.637	-9.470	122.209	-72.341	20.5	2.15 ± 0.08	10.2 ± 1.4	19.0 ± 4.0	8.8 ± 1.3	Т
0FGL J0051.1-0647	12.796	-6.794	122.751	-69.666	15.7	2.22 ± 0.11	8.5 ± 1.5	19.7 ± 4.4	7.2 ± 1.4	Т
0FGL J0100.2+0750	15.051	7.844	126.716	-54.963	11.1	1.80 ± 0.16	1.9 ± 0.7	3.9 ± 1.7	$0.3 \pm 0.1^{\dagger}$	
0FGL J0112.1+2247	18.034	22.789	129.148	-39.832	17.6	2.10 ± 0.09	7.4 ± 1.2	12.6 ± 2.7	6.0 ± 0.7	
)FGL J0118.7-2139	19.676	-21.656	172.990	-81.728	17.8	2.32 ± 0.10	9.6 ± 1.4	21.4 ± 4.5	7.6 ± 1.1	Т
)FGL J0120.5-2703	20.128	-27.056	213.951	-83.529	11.8	1.99 ± 0.14	3.2 ± 0.8	6.7 ± 2.3	2.6 ± 0.8	
)FGL J0136.6+3903	24.163	39.066	132.446	-22.969	12.5	1.65 ± 0.13	1.8 ± 0.5	4.7 ± 1.5	$0.5 \pm 0.1^{\dagger}$	
)FGL J0137.1+4751	24.285	47.854	130.818	-14.317	18.8	2.20 ± 0.09	10.9 ± 1.7	18.6 ± 4.5	10.8 ± 1.6	Т
OFGL J0144.5+2709	26.142	27.159	137.248	-34.231	10.4	2.22 ± 0.14	5.4 ± 1.3	12.7 ± 3.8	2.0 ± 0.5	
)FGL J0145.1-2728	26.289	-27.478	217.694	-78.067	13.4	2.55 ± 0.14	9.2 ± 1.7	26.3 ± 5.4	9.4 ± 1.3	Т
)FGL J0204.8-1704	31.219	-17.068	186.072	-70.274	16.6	2.48 ± 0.11	11.1 ± 1.7	18.9 ± 3.9	10.7 ± 1.3	
)FGL J0210.8-5100	32.706	-51.013	276.083	-61.776	34.1	2.28 ± 0.06	24.4 ± 2.0	76.2 ± 6.9	22.8 ± 1.2	Т
)FGL J0217.8+0146	34.467	1.768	162.139	-54.389	21.7	2.13 ± 0.08	10.2 ± 1.3	16.5 ± 3.8	9.8 ± 1.2	Г
)FGL J0220.9+3607	35.243	36.121	142.504	-23.325	12.3	2.61 ± 0.16	11.0 ± 2.4	22.5 ± 6.1	10.9 ± 1.3	
)FGL J0222.6+4302	35.653	43.043	140.132	-16.763	47.4	1.97 ± 0.04	25.9 ± 1.6	49.6 ± 4.8	26.6 ± 1.4	Т
)FGL J0229.5-3640	37.375	-36.681	243.801	-67.189	19.2	2.57 ± 0.11	15.8 ± 2.1	34.1 ± 6.2	14.1 ± 1.5	Г
0FGL J0238.4+2855	39.600	28.923	149.521	-28.368	10.9	2.49 ± 0.15	9.0 ± 2.0	24.7 ± 5.9	8.6 ± 1.6	
0FGL J0238.6+1636	39.663	16.613	156.775	-39.112	85.7	2.05 ± 0.02	72.6 ± 2.5	104.8 ± 7.1	67.6 ± 2.2	Г
)FGL J0245.6-4656	41.423	-46.934	262.019	-60.098	11.4	2.34 ± 0.15	6.2 ± 1.5	12.4 ± 4.0	5.6 ± 0.8	
)FGL J0303.7-2410	45.940	-24.176	214.764	-60.119	12.3	2.01 ± 0.13	3.8 ± 0.9	8.0 ± 2.8	2.9 ± 0.9	
0FGL J0320.0+4131	50.000	41.524	150.601	-13.230	29.7	2.17 ± 0.06	22.1 ± 1.9	35.9 ± 5.3	18.2 ± 1.4	Г
OFGL J0334.1-4006	53.546	-40.107	244.710	-54.088	13.2	2.15 ± 0.12	5.3 ± 1.1	11.2 ± 3.1	4.9 ± 1.4	
0FGL J0349.8-2102	57.465	-21.046	214.385	-49.035	21.2	2.55 ± 0.09	19.2 ± 2.3	27.8 ± 5.0	17.3 ± 1.6	
0FGL J0407.6-3829	61.923	-38.491	241.360	-47.751	13.5	2.31 ± 0.13	7.5 ± 1.5	22.2 ± 4.1	6.9 ± 1.3	Г
0FGL J0412.9-5341	63.230	-53.686	263.001	-44.716	10.7	2.30 ± 0.15	5.4 ± 1.3	12.3 ± 3.8	6.0 ± 1.3	
0FGL J0423.1-0112	65.785	-1.204	195.131	-33.092	11.5	2.38 ± 0.16	8.1 ± 2.2	13.4 ± 4.0	10.5 ± 3.1	
)FGL J0428.7-3755	67.193	-37.923	240.689	-43.597	39.6	2.14 ± 0.05	24.5 ± 1.8	31.5 ± 4.7	23.1 ± 1.6	
)FGL J0449.7-4348	72.435	-43.815	248.780	-39.859	28.4	2.01 ± 0.06	12.0 ± 1.3	21.1 ± 4.2	12.2 ± 1.4	
)FGL J0457.1-2325	74.288	-23.432	223.739	-34.880	52.3	2.23 ± 0.04	41.8 ± 2.3	64.2 ± 6.4	36.6 ± 1.8	Г
)FGL J0507.9+6739	76.985	67.650	143.772	15.905	13.2	1.67 ± 0.18	1.7 ± 0.8	5.2 ± 1.7	$0.3 \pm 0.1^{\dagger}$	
0FGL J0516.2-6200	79.063	-62.000	271.376	-34.834	11.2	2.17 ± 0.17	5.4 ± 1.7	11.1 ± 3.3	$0.4 \pm 0.1^{\dagger}$	
)FGL J0531.0+1331	82.761	13.528	191.385	-10.992	17.3	2.54 ± 0.09	24.3 ± 2.9	39.5 ± 6.7	23.6 ± 2.1	Г
0FGL J0538.8-4403	84.725	-44.062	250.057	-31.075	48.6	2.19 ± 0.04	37.6 ± 2.2	49.7 ± 5.6	34.3 ± 1.8	Г
0FGL J0654.3+4513	103.590	45.220	171.228	19.369	29.2	2.32 ± 0.06	23.8 ± 2.1	56.4 ± 7.2	20.3 ± 1.6	T
0FGL J0654.3+5042	103.592	50.711	165.676	21.107	15.6	2.00 ± 0.10	5.5 ± 1.1	9.5 ± 2.6	4.9 ± 1.3	r
)FGL J0700.0-6611	105.016	-66.199	276.778	-23.809	10.1	1.98 ± 0.14	3.9 ± 1.0	8.7 ± 2.6	0.4 ± 0.1 [†]	
0FGL J0712.9+5034	108.231	50.575	166.688	23.900	11.2	2.04 ± 0.14	3.9 ± 1.1	10.5 ± 2.7	3.3 ± 0.7	
0FGL J0714.2+1934	108.552	19.574	197.685	13.648	15.0	2.35 ± 0.10	10.7 ± 1.6	27.0 ± 5.0	10.0 ± 0.1	Т
0FGL J0719.4+3302	109.869	33.037	185.139	19.855	12.3	2.37 ± 0.15	7.8 ± 1.7	20.8 ± 4.9	7.5 ± 1.5	r
)FGL J0722.0+7120	110.508	71.348	143.976	28.029	34.4	2.08 ± 0.05	16.4 ± 1.4	29.0 ± 4.2	17.0 ± 1.6	r
0FGL J0738.2+1738	114.575	17.634	201.933	18.081	11.9	2.10 ± 0.14	4.6 ± 1.1	7.5 ± 2.4	3.6 ± 1.4	
0FGL J0818.3+4222	124.579	42.367	178.244	33.409	20.9	2.10 ± 0.14 2.07 ± 0.08	9.6 ± 1.3	14.5 ± 2.9	7.0 ± 1.1	
0FGL J0824.9+5551	126.239	55.859	161.981	35.142	10.6	2.81 ± 0.20	11.4 ± 2.9	42.0 ± 8.1	10.8 ± 1.3	Т
)FGL J0855.4+2009	120.235 133.857	20.162	206.810	35.974	15.1	2.31 ± 0.20 2.31 ± 0.11	9.0 ± 1.5	42.0 ± 0.1 19.0 ± 4.1	10.8 ± 1.3 7.8 ± 1.3	
FGL J0909.7+0145	137.446	1.757	228.640	31.262	11.6	2.67 ± 0.11 2.67 ± 0.16	10.4 ± 2.1	13.0 ± 4.1 22.9 ± 6.1	9.5 ± 0.3	
0FGL J0921.2+4437	137.440 140.320	44.617	175.809	44.876	15.2	2.35 ± 0.12	10.4 ± 2.1 8.6 ± 1.5	15.7 ± 4.2	9.2 ± 1.4	
FGL J0921.2+4437	140.320 147.077	0.317	236.530	38.549	12.8	2.60 ± 0.12 2.60 ± 0.14	12.1 ± 2.2	13.7 ± 4.2 29.2 ± 5.7	9.2 ± 1.4 9.1 ± 1.4	 נ
FGL J0957.6+5522	147.077	55.375	158.605	47.939	24.0	2.00 ± 0.14 2.01 ± 0.07	12.1 ± 2.2 8.7 ± 1.1	12.9 ± 3.0 12.9 ± 3.0	9.1 ± 1.4 9.2 ± 1.3	
FGL J1012.9+2435	149.424 153.241	24.598	207.897	47.939 54.406	12.4	2.01 ± 0.07 2.22 ± 0.12	6.1 ± 1.2	12.9 ± 3.0 10.9 ± 3.6	9.2 ± 1.3 4.5 ± 0.9	
FGL J1012.9+2435	153.241 153.809	49.463	165.473	54.400 52.727	23.8	1.73 ± 0.07	0.1 ± 1.2 4.9 ± 0.7	10.9 ± 3.0 7.1 ± 1.7	4.3 ± 0.9 8.9 ± 1.5	
FGL J1015.9+0515	153.809 153.991	5.254	236.457	47.036	20.6	1.73 ± 0.07 2.20 ± 0.08	4.9 ± 0.7 11.7 ± 1.5	21.8 ± 4.5	13.1 ± 1.5	
FGL J1034.0+6051	153.591 158.504	60.853	147.765	49.122	14.8	2.20 ± 0.03 2.48 ± 0.13	9.3 ± 1.7	21.8 ± 4.3 22.0 ± 4.7	13.1 ± 1.3 7.5 ± 1.3	
				49.122 58.263		2.48 ± 0.13 1.42 ± 0.20				
FGL J1053.7+4926	163.442	49.449	160.309		10.1		0.5 ± 0.3	1.8 ± 0.9	$0.2 \pm 0.1^{\dagger}$	
FGL J1054.5+2212	163.626	22.215	216.968	63.049	11.2	2.24 ± 0.15	4.9 ± 1.3	10.8 ± 3.3	4.3 ± 1.0	• •
FGL J1057.8+0138	164.451	1.643	251.219	52.709	10.3	2.20 ± 0.17	5.0 ± 1.4	10.7 ± 2.8	9.2 ± 1.7	• •
FGL J1058.9+5629	164.731	56.488	149.521	54.442	12.0	2.11 ± 0.14	3.9 ± 1.0	8.3 ± 2.7	5.0 ± 1.8	
FGL J1100.2-8000	165.057	-80.012	298.047	-18.212	12.1	2.71 ± 0.16	17.1 ± 3.8	38.4 ± 8.5	11.1 ± 2.2	Г
FGL J1104.5+3811	166.137	38.187	179.868	65.056	47.1	1.77 ± 0.04	15.3 ± 1.1	20.9 ± 3.1	15.9 ± 1.3	• •
0FGL J1129.8-1443	172.454	-14.727	275.133	43.694	10.5	2.69 ± 0.18	9.9 ± 2.4	25.8 ± 5.8	10.8 ± 1.6	• •
OFGL J1146.7-3808	176.689	-38.149	289.170	22.988	10.4	2.21 ± 0.14	5.7 ± 1.4	7.5 ± 2.8	3.5 ± 1.2	• •
OFGL J1159.2+2912	179.800	29.216	199.605	78.307	14.6	2.47 ± 0.13	10.3 ± 1.8	16.0 ± 3.8	9.4 ± 1.0	
0FGL J1218.0+3006	184.517	30.108	188.826	82.097	27.4	1.89 ± 0.06	9.7 ± 1.1	40.9 ± 4.7	10.4 ± 1.0	Г
0FGL J1221.7+2814	185.439	28.243	201.593 289.975	$83.336 \\ 64.355$	$24.0 \\ 52.0$	1.93 ± 0.07 2.71 ± 0.05	8.3 ± 1.1 75.2 ± 4.3	17.2 ± 3.5 137.0 ± 13.0	7.5 ± 0.9 65.5 ± 2.6	Г Г
0FGL J1229.1+0202	187.287	2.045								

Table 3—Continued

LAT Name	R.A.	Dec	l	b	\sqrt{TS}	$\Gamma^{\mathbf{a}}$	$F_{100}{}^{\rm b}$	$F_{peak}{}^{\rm c}$	F_{25}^{d}	Var.
0FGL J1246.6-2544	191.655	-25.734	301.571	37.125	11.7	2.24 ± 0.14	6.8 ± 1.6	15.3 ± 4.3	7.6 ± 1.4	
0FGL J1248.7+5811	192.189	58.191	123.617	58.934	14.3	1.95 ± 0.11	3.8 ± 0.8	8.0 ± 2.4	7.4 ± 1.6	
0FGL J1253.4+5300	193.369	53.001	122.229	64.125	12.1	2.17 ± 0.14	4.7 ± 1.1	9.1 ± 2.6	5.6 ± 1.5	
0FGL J1256.1-0547	194.034	-5.800	305.081	57.052	36.8	2.35 ± 0.05	31.5 ± 2.3	46.3 ± 6.8	29.7 ± 1.8	Т
0FGL J1310.6+3220	197.656	32.339	85.458	83.331	27.3	2.25 ± 0.07	15.5 ± 1.6	37.3 ± 4.6	16.4 ± 1.1	т
0FGL J1325.4-4303	201.353	-43.062	309.501	19.376	12.4	2.91 ± 0.18	21.5 ± 4.5	32.3 ± 8.0	22.2 ± 2.4	
0FGL J1331.7-0506	202.935	-5.112	321.247	56.320	14.3	2.59 ± 0.12	13.0 ± 2.1	33.0 ± 5.9	10.7 ± 1.2	т
0FGL J1333.3+5058	203.331	50.973	107.300	64.865	12.4	2.40 ± 0.14	7.2 ± 1.5	13.7 ± 4.6	9.1 ± 1.3	т
0FGL J1355.0-1044	208.764	-10.735	327.221	49.113	11.5	2.37 ± 0.15	7.6 ± 1.8	34.4 ± 5.5	8.7 ± 1.3	т
0FGL J1427.1+2347	216.794	23.785	29.472	68.166	24.1	1.80 ± 0.07	6.2 ± 0.8	8.7 ± 2.2	5.1 ± 1.0	
0FGL J1457.6-3538	224.407	-35.639	329.936	20.530	39.6	2.24 ± 0.05	36.6 ± 2.4	77.2 ± 7.1	32.1 ± 0.5	т
0FGL J1504.4+1030	226.115	10.505	11.409	54.577	88.2	2.17 ± 0.02	81.4 ± 2.7	260.0 ± 15.0	69.3 ± 2.1	т
0FGL J1511.2-0536	227.814	-5.613	354.099	42.948	10.8	2.41 ± 0.15	8.8 ± 2.1	16.2 ± 4.4	8.6 ± 1.7	
0FGL J1512.7-0905	228.196	-9.093	351.282	40.153	45.0	2.48 ± 0.05	55.8 ± 3.3	165.9 ± 11.7	50.6 ± 2.3	т
0FGL J1517.9-2423	229.496	-24.395	340.724	27.521	12.3	1.94 ± 0.14	4.1 ± 1.2	7.0 ± 2.4	5.2 ± 0.6	
0FGL J1522.2+3143	230.552	31.726	50.143	57.014	34.3	2.39 ± 0.06	25.7 ± 2.1	42.0 ± 5.1	22.2 ± 1.5	т
0FGL J1543.1+6130	235.784	61.504	95.383	45.370	10.5	2.00 ± 0.15	2.5 ± 0.7	4.3 ± 1.7	3.3 ± 1.4	
0FGL J1553.4+1255	238.368	12.922	23.746	45.225	23.7	2.23 ± 0.07	16.1 ± 1.8	33.6 ± 5.6	15.6 ± 2.2	т
0FGL J1555.8+1110	238.951	11.181	21.911	43.941	31.5	1.70 ± 0.06	8.0 ± 1.0	11.6 ± 2.3	10.2 ± 2.0	
0FGL J1625.8-2527	246.470	-25.451	352.164	16.308	11.4	2.40 ± 0.15	16.0 ± 4.6	28.4 ± 8.0	19.8 ± 1.3	
0FGL J1625.9-2423	246.494	-24.393	353.005	16.995	10.1	2.46 ± 0.14	19.9 ± 5.1	32.1 ± 8.1	10.7 ± 0.9	
0FGL J1635.2+3809	248.821	38.158	61.118	42.333	27.3	2.44 ± 0.07	22.0 ± 2.2	49.8 ± 6.0	17.6 ± 1.3	т
0FGL J1641.4+3939	250.355	39.666	63.239	41.239	17.7	2.43 ± 0.10	13.4 ± 2.1	33.7 ± 6.3	12.7 ± 1.4	т
0FGL J1653.9+3946	253.492	39.767	63.612	38.841	19.0	1.70 ± 0.09	3.1 ± 0.6	6.9 ± 1.8	3.3 ± 0.8	
0FGL J1719.3+1746	259.830	17.768	39.553	28.080	23.3	1.84 ± 0.07	6.9 ± 0.9	15.0 ± 3.0	6.3 ± 1.2	т
0FGL J1751.5+0935	267.893	9.591	34.867	17.614	23.1	2.27 ± 0.07	18.4 ± 2.1	41.4 ± 6.3	17.8 ± 1.9	т
0FGL J1802.2+7827	270.567	78.466	110.026	28.990	12.6	2.25 ± 0.14	6.0 ± 1.4	11.1 ± 3.1	5.9 ± 1.3	
0FGL J1847.8+3223	281.954	32.385	62.065	14.838	16.0	2.37 ± 0.10	14.7 ± 2.4	28.0 ± 4.9	9.4 ± 0.6	т
0FGL J1849.4+6706	282.365	67.102	97.503	25.027	28.0	2.17 ± 0.06	15.9 ± 1.5	28.8 ± 4.1	14.9 ± 1.5	т
0FGL J1911.2-2011	287.813	-20.186	16.818	-13.266	20.0	2.43 ± 0.08	22.5 ± 2.7	52.3 ± 7.2	18.7 ± 0.8	т
0FGL J1923.3-2101	290.840	-21.031	17.205	-16.199	16.4	2.31 ± 0.10	13.1 ± 2.0	41.6 ± 6.1	11.3 ± 0.6	т
0FGL J2000.2+6506	300.053	65.105	97.974	17.630	15.8	1.86 ± 0.11	4.2 ± 1.0	6.3 ± 2.1	3.4 ± 1.3	
0FGL J2009.4-4850	302.363	-48.843	350.361	-32.607	10.9	1.85 ± 0.14	2.9 ± 0.9	5.5 ± 2.1	3.0 ± 0.6	
0FGL J2017.2+0602	304.302	6.048	48.596	-15.991	12.7	1.87 ± 0.12	3.7 ± 0.9	6.6 ± 2.3	$0.6 \pm 0.1^{\dagger}$	
0FGL J2025.6-0736	306.415	-7.611	36.883	-24.389	50.6	2.30 ± 0.04	48.0 ± 2.6	73.6 ± 7.1	43.0 ± 2.0	т
0FGL J2056.1-4715	314.034	-47.251	352.586	-40.358	12.5	2.56 ± 0.15	11.1 ± 2.3	21.1 ± 5.2	10.7 ± 1.7	
0FGL J2139.4-4238	324.865	-42.642	358.237	-48.332	20.1	2.01 ± 0.08	8.0 ± 1.2	13.1 ± 3.0	7.7 ± 1.3	
0FGL J2143.2+1741	325.807	17.688	72.016	-26.051	14.5	2.57 ± 0.12	14.1 ± 2.2	30.7 ± 6.2	12.0 ± 1.7	
0FGL J2147.1+0931	326.777	9.519	65.805	-32.236	19.9	2.53 ± 0.10	16.6 ± 2.1	34.7 ± 6.1	16.6 ± 1.6	т
0FGL J2157.5+3125	329.384	31.431	84.747	-18.258	10.0	2.41 ± 0.15	7.5 ± 1.7	13.9 ± 3.9	7.3 ± 1.5	
0FGL J2158.8-3014	329.704	-30.237	17.711	-52.236	43.9	1.85 ± 0.04	18.1 ± 1.2	29.2 ± 3.6	18.5 ± 1.4	т
0FGL J2202.4+4217	330.622	42.299	92.569	-10.398	12.3	2.24 ± 0.12	8.5 ± 1.8	12.8 ± 4.3	8.0 ± 2.0	
0FGL J2203.2+1731	330.815	17.532	75.715	-29.529	12.7	2.25 ± 0.12	6.9 ± 1.4	17.0 ± 3.5	8.3 ± 1.6	т
0FGL J2207.0-5347	331.765	-53.786	339.948	-49.832	12.4	2.65 ± 0.17	11.5 ± 2.5	54.6 ± 8.0	11.1 ± 1.8	T
0FGL J2229.8-0829	337.452	-8.495	55.326	-51.701	16.8	2.67 ± 0.12	15.9 ± 2.4	27.7 ± 5.7	12.0 ± 0.4	
0FGL J2232.4+1141	338.117	11.690	77.372	-38.592	15.2	2.61 ± 0.12 2.61 ± 0.12	10.0 ± 2.4 14.0 ± 2.3	24.6 ± 6.2	11.2 ± 1.3	
0FGL J2254.0+1609	343.502	16.151	86.125	-38.187	149.1	2.41 ± 0.02	246.1 ± 5.2	385.8 ± 20.5	221.6 ± 4.3	т
0FGL J2325.3+3959	351.334	39.993	105.532	-19.952	11.4	1.89 ± 0.13	2.8 ± 0.8	11.0 ± 2.7	1.3 ± 0.4	Ť
0FGL J2327.3+0947	351.833	9.794	91.159	-47.821	17.1	2.73 ± 0.12	18.3 ± 2.6	51.0 ± 8.4	15.8 ± 1.6	T
0FGL J2345.5-1559	356.389	-15.985	65.677	-71.092	15.5	2.42 ± 0.12	10.5 ± 1.7	22.3 ± 4.3	10.3 ± 1.3	Ť

 $^{\mathrm{a}}\mathrm{Spectral}$ index derived from a single power-law fit over the 0.2-100 GeV energy range

 $^{\rm b}$ Flux (E > 100 MeV, in 10^{-8} ph cm⁻² s⁻¹) derived from a single power-law fit over the 0.2-100 GeV energy range

 $^{\rm c}{\rm Weekly}$ averaged peak flux ($E>100~{\rm MeV})$ in $10^{-8}~{\rm ph~cm^{-2}\,s^{-1}}$

 $^{\rm d}$ Flux (E > 100 MeV, in 10^{-8} ph cm $^{-2}$ s $^{-1}$) obtained by adding the fluxes estimated in the two energy ranges 0.1 - 1 GeV and 1 - 100 GeV

[†]Flux at E > 1 GeV in $10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}$. For these sources, only an upper limit is obtained for the 0.1–1 GeV flux (see Abdo et al. (2009c)).

LAT Name	EGRET Name	$\mathbf{F}^F_{mean}{}^{\mathbf{a}}$	\mathbf{F}_{peak}^F	index^F	$\mathbf{F}^{E}_{100}{}^{\mathbf{a}}$	\mathbf{F}^{E}_{peak}	index^E	Type
0FGL J0210.8-5100	J0210-5055	24.3	76.2	2.28	85.5	134.0	1.99	FSRQ
0FGL J0222.6+4302	J0222 + 4253	25.8	49.6	1.96	18.7	25.3	2.01	BLLac
0FGL J0238.6+1636	J0237 + 1635	72.5	104.	2.05	25.9	65.1	1.85	BLLac
0FGL J0423.1-0112	J0422 - 0102	8.0	13.3	2.37	16.3	81.7	2.44	\mathbf{FSRQ}
0FGL J0457.1 -2325	J0456 - 2338	41.7	64.2	2.23	8.1	18.8	3.14	\mathbf{FSRQ}
0 FGL J0516.2 - 6200	J0512 - 6150	5.3	11.1	2.17	7.2	28.8	2.40	Unc
0FGL J0531.0+1331	J0530 + 1323	24.3	39.4	2.54	93.5	351.0	2.46	\mathbf{FSRQ}
0FGL J0538.8-4403	J0540 - 4402	37.6	49.6	2.18	25.3	91.1	2.41	BLLac
0FGL J0722.0+7120	J0721 + 7120	16.3	29.0	2.07	17.8	31.8	2.19	BLLac
0FGL J0738.2+1738	J0737 + 1721	4.6	7.46	2.10	16.4	37.5	2.60	BLLac
0 FGL J0855.4 + 2009	J0853 + 1941	8.9	18.9	2.30	10.6	15.8	2.03	BLLac
0FGL J0921.2+4437	J0917 + 4427	8.6	15.6	2.34	13.8	40.8	2.19	\mathbf{FSRQ}
0FGL J0957.6 $+5522$	J0952 + 5501	8.7	12.8	2.01	9.1	47.2	2.12	\mathbf{FSRQ}
0FGL J1104.5+3811	J1104 + 3809	15.3	20.9	1.76	13.9	27.1	1.57	BLLac
0FGL J1159.2+2912	J1200 + 2847	10.3	16.0	2.47	7.5	163.0	1.73	\mathbf{FSRQ}
0FGL J1229.1+0202	J1229 + 0210	75.2	136.	2.71	15.4	53.6	2.58	FSRQ
0FGL J1256.1-0548	J1255 - 0549	31.5	46.3	2.34	74.2	267.0	1.96	FSRQ
0FGL J1325.4-4303	J1324 - 4314	21.4	32.3	2.90	13.6	38.4	2.58	RG (CenA)
0FGL J1333.3+5058	J1337 + 5029	7.2	13.7	2.4	9.2	26.8	1.83	FSRQ
0FGL J1457.6-3538	J1500 - 3509	36.5	77.2	2.24	10.9	40.7	2.99	\mathbf{FSRQ}
0FGL J1512.7-0905	J1512 - 0849	55.8	165.	2.47	18.0	51.1	2.47	FSRQ
0FGL J1517.9-2423	J1517 - 2538	4.1	6.96	1.93	8.4	53.3	2.66	BLLac
0 FGL J1625.8 - 2527	J1626 - 2519	16.0	28.4	2.39	21.3	90.2	2.21	\mathbf{FSRQ}
0FGL J1625.9-2423	J1627 - 2419	19.9	32.1	2.45	15.8	55.2	2.21	Unc
0FGL J1635.2+3809	J1635 + 3813	22.0	49.7	2.43	58.4	108.0	2.15	\mathbf{FSRQ}
0FGL J1802.6 $-3939^{\rm b}$	J1800 - 3955	25.4	64.0	2.23	9.8	189.0	3.10	Unc
0FGL J1833.4 $-2106^{\rm b}$	J1832 - 2110	42.0	56.8	2.61	26.6	99.3	2.59	\mathbf{FSRQ}
0FGL J1911.2-2011	J1911 - 2000	22.4	52.2	2.42	17.5	47.6	2.39	\mathbf{FSRQ}
0FGL J1923.3-2101	J1921 - 2015	13.0	41.6	2.31	4.6	31.0	2.10	\mathbf{FSRQ}
0FGL J2025.6-0736	J2025 - 0744	47.9	73.5	2.30	21.2	74.5	2.38	BLLac
0 FGL J2056.1 - 4715	J2055 - 4716	11.0	21.0	2.55	9.6	35.0	2.04	\mathbf{FSRQ}
0FGL J2158.8-3014	J2158 - 3023	18.0	29.1	1.85	13.2	30.4	2.35	BLLac
0FGL J2202.4+4217	J2202 + 4217	8.4	12.8	2.23	11.1	39.9	2.60	BLLac
0FGL J2232.4+1141	J2232 + 1147	14.0	24.5	2.61	19.2	51.6	2.45	\mathbf{FSRQ}
0FGL J2254.0+1609	J2254 + 1601	246.	385.	2.41	53.7	116.0	2.21	FSRQ

Table 4. Sources in both *Fermi*-LAT and *EGRET* samples

 $^{\rm a}10^{-8}\,\rm ph\;cm^{-2}\,s^{-1}$

^bsource located at $|b| < 10^\circ$

Table 5. Correlation analysis for the radio and gamma-ray properties

Data	Method	Source type	# objects	Correlation coeff.	Chance probability ^a
$S_{8.4\mathrm{GHz}} - F_{>100\mathrm{MeV,peak}}$	Spearman rank	All	106	0.42	0.0000045
$\log L_r$ - $\log L_\gamma$	Sp. r., partial	All	90	0.46	0.0000025
$S_{8.4\mathrm{GHz}} - F_{>100\mathrm{MeV,peak}}$	Spearman rank	FSRQ	57	0.19	0.080
$\log L_r$ - $\log L_\gamma$	Sp. r., partial	FSRQ	57	0.34	0.0047
$S_{8.4\mathrm{GHz}}-F_{>100\mathrm{MeV,peak}}$	${\it Spearman} \ {\it rank}$	BL Lacs	42	0.49	0.00055
$\operatorname{Log} L_r$ - $\operatorname{Log} L_\gamma$	Sp. r., partial	BL Lacs	30	0.60	0.00023

^aif the samples were unbiased

CLASS	# objects
Total	132
FSRQs	57^{a}
BL Lacs	42^{a}
Uncertain ^b	5^{a}
Radio Galaxies	2^{a}
Pulsars	$7^{\rm c}$
Anti-associations	4
Low confidence associations	10
Unassociated sources	5

Table 6. Composition of the $|\mathbf{b}| \ge 10^{\circ}$ sample (TS ≥ 100).

^aPart of the high confidence sample.

^bBlazars with uncertain classification.

^cFive LAT detected pulsars plus 0FGL J0025.1-7202 (47 Tuc) and 0FGL J0538.4-6856 (associated with the Large Magellan Cloud, see Abdo et al. (2009c)).

Table 7. Results of the best power-law fits to the source counts distributions. Errors withinbrackets are systematic uncertainties due to the incompleteness of the sample. The lower part ofthe table shows the results for the *flux-limited* portion of the sample.

SAMPLE	# Objects	α	A^{a}	EDB fraction ^b
All ^c	121	$2.59{\pm}0.12$	$2.62 {\pm} 0.24$	7.2%
Blazars	106	$2.50{\pm}0.12$	$2.24 \pm 0.22 (\pm 0.24)$	6.1%
\mathbf{FSRQs}	57	$2.60{\pm}0.14$	$2.15 \pm 0.28 (\pm 0.32)$	3.1% d
BL Lacs	42	$2.34{\pm}0.15$	$0.41 \pm 0.06 (\pm 0.06)$	1.0%
FSRQs	29	$2.52{\pm}0.20$	$1.93 \pm 0.35 (\pm 0.09)$	$2.6\%^{ m d}$
BL Lacs	9	$2.50{\pm}0.37$	$0.48 \pm 0.16 (\pm 0.02)$	1.3%

^aIn units of $10^4 \text{ cm}^2 \text{ s deg}^{-2}$.

^bFraction of the EGRET diffuse extragalactic background (Sreekumar et al. 1998) resolved into sources by LAT for $4 \times 10^{-8} < F_{100} < 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$.

^cIncludes all sources except 7 pulsars and 4 anti-associated objects.

 $^{\rm d}{\rm The}$ lower limit of integration in Eq. 7 has been set to $6\times10^{-8}\,{\rm ph}~{\rm cm}^{-2}~{\rm s}^{-1}.$

_	60	_
---	----	---

SAMPLE	# Objects	$< V/V_{MAX} >$
FSRQs	57	0.645 ± 0.043
BL Lacs	31	$0.430\ {\pm}0.055$
BL $Lacs^a$	42	$0.472\ {\pm}0.046$
BL $Lacs^b$	42	$0.473\ {\pm}0.046$
All with $z > 0$	92	$0.512\ {\pm}0.031$
FSRQs ^c	29	$0.654\ {\pm}0.061$
BL Lacs ^c	8	0.542 ± 0.103

Table 8. Results of the V/V_{MAX} test.

^aFor all the 11 BL Lacs without redshift, we have assumed $z = \langle z \rangle$ where $\langle z \rangle = 0.38$.

^bFor all the 11 BL Lacs without redshift, we have drawn a redshift measurement from a Gaussian distribution with mean 0.38 and dispersion 0.34.

^cFlux-limited sample.

Table 9. Results of best-fit power-law models to the GLFs of FSRQs in different redshift bins. The lower part of the table shows the results for the *flux-limited* portion of the sample. Errors represent the 68 % confidence level. Uncertainties within bracketes are systematic errors due to the incompleteness of the sample.

Redshift bin	# Objects	eta	Normalization ^a
$egin{array}{llllllllllllllllllllllllllllllllllll$	20 17 20	1.57 ± 0.10 2.56 ± 0.29 2.58 ± 0.19	$2.43 \pm 0.52 (\pm 0.36)$ $5.59 \pm 1.33 (\pm 0.83)$ $13.07 \pm 2.92 (\pm 1.96)$
$ \begin{array}{c} z > 1.4 \\ z = 0.0 - 0.9 \\ z = 0.9 - 1.4 \\ z > 1.4 \end{array} $	10 8 11	$\begin{array}{r} 2.65 \pm 0.13 \\ 1.46 \pm 0.13 \\ 2.65 \pm 0.48 \\ 2.63 \pm 0.30 \end{array}$	$\frac{1.73 \pm 0.54 (\pm 0.08)}{1.73 \pm 0.54 (\pm 0.33)}$ $\frac{1.662 \pm 2.34 (\pm 0.33)}{17.76 \pm 5.35 (\pm 0.88)}$

^aNormalization of the GLF model at 10^{48} erg s⁻¹ expressed in units of 10^{-11} erg⁻¹ s Mpc⁻³.

Table 10. Results of best-fit power-law models to GLFs of BL Lacs in different redshift bins. The lower part of the table shows the results for the *flux-limited* portion of the sample. Errors represent the 68% confidence level. Uncertainties within bracketes are systematic errors due to the incompleteness of the sample.

Redshift bin	# Objects	eta	Normalization ^a
z = 0.0 - 0.3	15	$2.08 {\pm} 0.16$	$7.67 \pm 1.98 (\pm 3.06)$
z > 0.3	16	$2.10{\pm}0.11$	$4.75 \pm 1.18 (\pm 1.90)$
z > 0.0	31	$2.17{\pm}0.05$	$4.19 \pm 0.75 (\pm 1.67)$
z > 0.0	8	$1.90 {\pm} 0.11$	$6.70 \pm 2.36 (\pm 0.33)$

^aNormalization of the GLF model at $10^{48} \text{ erg s}^{-1}$ expressed in units of $10^{-12} \text{ erg}^{-1} \text{ s} \text{ Mpc}^{-3}$.