533 research outputs found

    The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity

    Full text link
    A theory for the structure of isothermal, self-gravitating gas spheres in pressure equilibrium in a softened gravitational field is developed. The one parameter spline softening proposed by Hernquist & Katz (1989) is used. We show that the addition of this extra scale parameter implies that the set of equilibrium solutions constitute a one-parameter family, rather than the one and only one isothermal sphere solution for Newtonian gravity. We demonstrate the perhaps somewhat surprising result that for any finite choice of softening length and temperature, it is possible to deposit an arbitrarily large mass of gas in pressure equilibrium and with a non-singular density distribution inside of r_0 for any r_0 > 0. The theoretical predictions of our models are compared with the properties of the small, massive, quasi-isothermal gas clumps which typically form in numerical Tree-SPH simulations of 'passive' galaxy formation of Milky Way sized galaxies. We find reasonable agreement despite the neglect of rotational support in the models. We comment on whether the hydrodynamical resolution in our numerical simulation of galaxy formation is sufficient, and finally we conclude that one should be cautious, when comparing results of numerical simulations involving gravitational softening and hydrodynamical smoothing, with reality.Comment: 22 pages Latex + 12 figure

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 10−14^{-14} at one second can be reached with a precision limited by power broadening to 10−1110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    MCG+00-32-16: An Irregular Galaxy Close to the Lowest Redshift Absorber on the 3C 273 Line of Sight

    Get PDF
    MCG+00-32-16 is the galaxy closest in position-velocity space to the lowest redshift Lyα\alpha absorber along the line-of-sight to the quasar 3C 273. Its projected separation is 204 (d/19 Mpc) kpc, where d is the distance from the Milky Way to the galaxy, and the redshift difference is only 94 km/s; HI 1225+01 is slightly closer in projected separation to the absorber, but has a greater redshift difference. We present HI synthesis array mapping and CCD photometry in B and R for MCG+00-32-16. The HI disk is rotating in such a way that the side of the galaxy closer to the sight-line to the quasar has the larger velocity difference from the absorber. The absorber may be a ``failed dwarf'' member of a poor galaxy group of which MCG+00-32-16 and HI 1225+01 are the only members to have formed stars.Comment: 14 pages, 9 figures, accepted by Astrophysical Journa

    Prediction of drop-out and outcome in integrated cognitive behavioral therapy for ADHD and SUD:Results from a randomized clinical trial

    Get PDF
    Background: Patients with substance use disorder (SUD) or Attention Deficit Hyperactivity Disorder (ADHD) have a high risk of drop out from treatment. Few studies have investigated predictors of therapy drop out and outcome in SUD patients with comorbid ADHD. Recently, integrated cognitive behavioral therapy (CBT/Integrated) was shown to be more effective than standard CBT (CBT/SUD) in the treatment of SUD + ADHD. Objective: To investigate the association of demographic, clinical and neurocognitive variables with drop-out and treatment outcome, and to examine which of these variables are suitable for patient-treatment matching. Methods: We performed an RCT in which 119 patients were allocated to CBT/Integrated (n = 60) or CBT/SUD (n = 59). In addition, 55 patients had dropped out before randomization. Demographic variables, clinical characteristics and measures of cognitive functioning (Stroop, Tower of London (ToL) and Balloon Analogue Risk Task (BART)) were included as predictors. Outcome measures were: early treatment drop-out, ADHD symptom severity, and substance use severity at end of treatment and follow up. Results: Primary substance of abuse (drugs as opposed to alcohol only) and lower accuracy scores on the ToL were significant predictors of early treatment drop-out. Having more depression and anxiety symptoms and using ADHD medication at baseline significantly predicted more ADHD symptoms at end of treatment, and higher accuracy scores on the ToL significantly predicted higher substance use at end of treatment. No significant predictor-by-treatment interactions were found. Conclusion: The results add to the existing realization that also relatively mild cognitive deficits are a risk factor for treatment drop-out in these patients

    Cosmological Feedback from High-Redshift Dwarf Galaxies

    Full text link
    We model how repeated supernova explosions in high-redshift dwarf starburst galaxies drive superbubbles and winds out of the galaxies. We compute the efficiencies of metal and mass ejection and energy transport from the galactic potentials, including the effect of cosmological infall of external gas. The starburst bubbles quickly blow out of small, high-redshift, galactic disks, but must compete with the ram pressure of the infalling gas to escape into intergalactic space. We show that the assumed efficiency of the star formation rate dominates the bubble evolution and the metal, mass, and energy feedback efficiencies. With star formation efficiency f*=0.01, the ram pressure of infall can confine the bubbles around high-redshift dwarf galaxies with circular velocities v_c>52 km/s. We can expect high metal and mass ejection efficiencies, and moderate energy transport efficiencies in halos with v_c~30-50 km/s and f*~0.01 as well as in halos with v_c~100 km/s and f*>>0.01. Such haloes collapse successively from 1-2 sigma peaks in LambdaCDM Gaussian density perturbations as time progresses. These dwarf galaxies can probably enrich low and high-density regions of intergalactic space with metals to 10^-3-10^-2 Zsun as they collapse at z~8 and z<5 respectively. They also may be able to provide adequate turbulent energy to prevent the collapse of other nearby halos, as well as to significantly broaden Lyman-alpha absorption lines to v_rms~20-40 km/s. We compute the timescales for the next starbursts if gas freely falls back after a starburst, and find that, for star formation efficiencies as low as f*<0.01, the next starburst should occur in less than half the Hubble time at the collapse redshift. This suggests that episodic star formation may be ubiquitous in dwarf galaxies.Comment: Accepted for ApJ v613, 60 pages, 15 figure
    • 

    corecore