39,664 research outputs found

    Dude Looks Like a Lady: Gender Deception, Consent and Ethics

    Get PDF
    Finding the answer to whether consent is present within a sexual encounter has become increasingly difficult for the courts. We argue that this is due to the focus placed on entrenching gender binaries, a conservative sexual ethic and clear offender/victim roles. It should be the case that the court’s task is to find the truth of the encounter in coming to a judgment as to the ethical balance, rather than judging the parties’ conformity to cisnormative and heteronormative roles. This endeavour is obscured by the court’s need to exclude ‘sex talk’, or otherwise testimony as to the messy reality of the encounter, in favour of asserting gender identity and a procreative understanding of sex. We are, therefore, left in the position where the required information necessary for valid consent is obscured by the courts. We draw on an analysis of cases involving issues relating to consent to sex in order to argue for a judicial approach that is informed by a more flexible understanding of sexual autonomy

    Electronic Raman Scattering in Twistronic Few-Layer Graphene

    Get PDF
    We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir\'{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir\'{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.Comment: 7 pages (including 4 figures) + 10 pages (3 figures) supplemen

    A random number generator for continuous random variables

    Get PDF
    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form

    Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces

    Get PDF
    Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to the power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of surface induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.Comment: 27 pages, 11 figure

    Two-channel point-contact tunneling theory of superconductors

    Get PDF
    We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting in a Fano resonance in the differential conductance G=dI/dVG=dI/dV. We present an analysis of GG within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn5_5 and CeRhIn5_5 at high pressures. In the normal state the Fano line shape of the measured GG is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn5_5 consistent with standard dx2−y2d_{x^2-y^2}-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn5_5 at 1.8 and 2.0 GPa the signal is described by a dx2−y2d_{x^2-y^2}-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.Comment: 13 pages, 13 figure
    • …
    corecore