1,146 research outputs found
Rotation of rigid Venus: a complete precession-nutation model
Context: With the increasing knowledge of the terrestrial planets due to
recent space probes it is possible to model their rotation with increasing
accuracy. Despite that fact, an accurate determination of Venus precession and
nutation is lacking.
Aims : Although Venus rotation has been studied in several aspects, a full
and precise analytical model of its precession-nutation motion remains to be
constructed. We propose to determine this motion with up-to-date physical
parameters of the planet
Methods: We adopt a theoritical framework already used for a precise
precession-nutation model of the Earth, based on a Hamiltonian formulation,
canonical equations and an accurate development of the perturbing function due
to the Sun.
Results: After integrating the disturbing function and applying the canonical
equations, we can evaluate the precession constant and the
coefficients of nutation, both in longitude and in obliquity. We get
, corresponding to a precession period of
years. This result, based on recent estimations of the Venus
moment of inertia is significantly different from previous estimations. The
largest nutation coefficient in longitude with an argument (where
is the longitude of the Sun) has a 2"19 amplitude and a 112.35 d
period. We show that the coefficients of nutation of Venus due to its
triaxiality are of the same order of amplitude as these values due to its
dynamical flattening, unlike of the Earth, for which they are negligible.Comment: 14 pages, figures, published in A&
Impact crater formation: a simple application of solid state physics
This contribution is a first step aiming to address a general question: what
can be concluded on impact craters which exist on various planetary system
objects, by combining astronomical data and known theoretical results from
solid state physics. Assuming that the material of the target body is of
crystaline structure,it is shown that a simple calculation gives the
possibility of estimating the speed of the impactor responsible for the
creation of a crater.A test value,calculated using observed data on the
composition of some asteroids,gives a value of the speed in good agreement with
results of celestial mechanics.Comment: plain LaTeX,presented at the 6 SREAC meeting Belgrade,September
2009.,and to appear in the proceeding
Accurate free and forced rotational motions of rigid Venus
% context :The precise and accurate modelling of a terrestrial planet like
Venus is an exciting and challenging topic, all the more interesting since it
can be compared with that of the Earth for which such a modelling has already
been achieved at the milliarcsecond level % aims: We want to complete a
previous study (Cottereau and Souchay, 2009), by determining at the
milliarcsecond level the polhody, i.e. the torque-free motion of the axis of
angular momentum of a rigid Venus in a body-fixed frame, as well as the
nutation of its third axis of figure in space, which is fundamental from an
observational point of view. results :In a first part we have computed the
polhody, i.e. the respective free rotational motion of the axis of angular
momentum of Venus with respect to a body-fixed frame. We have shown that this
motion is highly elliptical, with a very long period of 525 cy to be compared
with 430 d for the Earth. This is due to the very small dynamical flattening of
Venus in comparison with our planet. In a second part we have computed
precisely the Oppolzer terms which allow to represent the motion in space of
the third Venus figure axis with respect to Venus angular momentum axis, under
the influence of the solar gravitational torque. We have determined the
corresponding tables of coefficients of nutation of the third figure axis both
in longitude and in obliquity due to the Sun, which are of the same order of
amplitude as for the Earth. We have shown that the coefficients of nutation for
the third figure axis are significantly different from those of the angular
momentum axis on the contrary of the Earth. Our analytical results have been
validated by a numerical integration which revealed the indirect planetary
effects.Comment: 14 pages, 11 figures, accepted for publication in section 11.
Celestial mechanics and astrometry of Astronomy and Astrophysics (27/02/2010
Subjective experience of episodic memory and metacognition: a neurodevelopmental approach.
Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process
A precise modeling of Phoebe's rotation
Although the rotation of some Saturn's satellites in spin-orbit has already
been studied by several authors, this is not the case of the rotation of
Phoebe, which has the particularity of being non resonant. The purpose of the
paper is to determine for the first time and with precision its
precession-nutation motion. We adopt an Hamiltonian formalism of the motion of
rotation of rigid celestial body set up by Kinoshita (1977) based on Andoyer
variables and canonical equations. First we calculate Phoebe's obliquity at
J2000,0 from available astronomical data as well as the gravitational
perturbation due to Saturn on Phoebe rotational motion. Then we carry out a
numerical integration and we compare our results for the precession rate and
the nutation coefficients with pure analytical model. Our results for Phoebe
obliquity (23{\deg}95) and Phoebe precession rate (5580".65/cy) are very close
to the respective values for the Earth. Moreover the amplitudes of the
nutations (26" peak to peak for the nutaton in longitude and 8" for the
nutation in obliquity) are of the same order as the respective amplitudes for
the Earth. We give complete tables of nutation, obtained from a FFT analysis
starting from the numerical signals. We show that a pure analytical model of
the nutation is not accurate due to the fact that Phoebe orbital elements e, M
and Ls are far from having a simple linear behaviour. The precession and
nutation of Phoebe have been calculated for the first time in this paper. We
should keep on the study in the future by studying the additional gravitational
effects of the Sun, of the large satellites as Titan, as well as Saturn
dynamical ellipticity.Comment: 11 pages,15 figures, accepted for publication in A&
About the various contributions in Venus rotation rate and LOD
% context heading (optional) {Thanks to the Venus Express Mission, new data
on the properties of Venus could be obtained in particular concerning its
rotation.} % aims heading (mandatory) {In view of these upcoming results, the
purpose of this paper is to determine and compare the major physical processes
influencing the rotation of Venus, and more particularly the angular rotation
rate.} % methods heading (mandatory) {Applying models already used for the
Earth, the effect of the triaxiality of a rigid Venus on its period of rotation
are computed. Then the variations of Venus rotation caused by the elasticity,
the atmosphere and the core of the planet are evaluated.} % results heading
(mandatory) {Although the largest irregularities of the rotation rate of the
Earth at short time scales are caused by its atmosphere and elastic
deformations, we show that the Venus ones are dominated by the tidal torque
exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation,
these effects have a large amplitude of 2 minutes of time (mn). These
variations of the rotation rate are larger than the one induced by atmospheric
wind variations that can reach 25-50 seconds of time (s), depending on the
simulation used. The variations due to the core effects which vary with its
size between 3 and 20s are smaller. Compared to these effects, the influence of
the elastic deformation cause by the zonal tidal potential is negligible.} %
conclusions heading (optional), leave it empty if necessary {As the variations
of the rotation of Venus reported here are of the order 3mn peak to peak, they
should influence past, present and future observations providing further
constraints on the planet internal structure and atmosphere.}Comment: 12 pages, 10 figures, Accepted in A&
The empirical Earth rotation model from VLBI observations
AIMS: An alternative to the traditional method for modeling kinematics of the
Earth's rotation is proposed. The purpose of developing the new approach is to
provide a self-consistent and simple description of the Earth's rotation in a
way that can be estimated directly from observations without using intermediate
quantities.
METHODS: Instead of estimating the time series of pole coordinates, the
UT1--TAI angles, their rates, and the daily offsets of nutation, it is proposed
to estimate coefficients of the expansion of a small perturbational rotation
vector into basis functions. The resulting transformation from the terrestrial
coordinate system to the celestial coordinate system is formulated as a product
of an a priori matrix of a finite rotation and an empirical vector of a
residual perturbational rotation. In the framework of this approach, the
specific choice of the a priori matrix is irrelevant, provided the angles of
the residual rotation are small enough to neglect their squares. The
coefficients of the expansion into the B-spline and Fourier bases, together
with estimates of other nuisance parameters, are evaluated directly from
observations of time delay or time range in a single least square solution.
RESULTS: This approach was successfully implemented in a computer program for
processing VLBI observations. The dataset from 1984 through 2006 was analyzed.
The new procedure adequately represents the Earth's rotation, including slowly
varying changes in UT1--TAI and polar motion, the forced nutations, the free
core nutation, and the high frequency variations of polar motion and UT1.Comment: 15 pages, 10 figures, Published in Astronomy and Astrophysics. For
numerical tables see http://vlbi.gsfc.nasa.gov/er
The dynamical environment of asteroid 21 Lutetia according to different internal models
One of the most accurate models currently used to represent the gravity field
of irregular bodies is the polyhedral approach. In this model, the mass of the
body is assumed to be homogeneous, which may not be true for a real object. The
main goal of the present paper is to study the dynamical effects induced by
three different internal structures (uniform, three- and four-layers) of
asteroid (21) Lutetia, an object that recent results from space probe suggest
being at least partially differentiated. The Mascon gravity approach used in
the present work, consists of dividing each tetrahedron into eight parts to
calculate the gravitational field around the asteroid. The zero-velocity curves
show that the greatest displacement of the equilibrium points occurs in the
position of the E4 point for the four-layers structure and the smallest one
occurs in the position of the E3 point for the three-layers structure.
Moreover, stability against impact shows that the planar limit gets slightly
closer to the body with the four-layered structure.
We then investigated the stability of orbital motion in the equatorial plane
of (21) Lutetia and propose numerical stability criteria to map the region of
stable motions. Layered structures could stabilize orbits that were unstable in
the homogeneous model.Comment: 10 pages, 7 figures, and 4 Tables. Accepted for publication in MNRA
The Large Quasar Reference Frame (LQRF) - an optical representation of the ICRS
The large number and all-sky distribution of quasars from different surveys,
along with their presence in large, deep astrometric catalogs,enables the
building of an optical materialization of the ICRS following its defining
principles. Namely: that it is kinematically non-rotating with respect to the
ensemble of distant extragalactic objects; aligned with the mean equator and
dynamical equinox of J2000; and realized by a list of adopted coordinates of
extragalatic sources. Starting from the updated and presumably complete LQAC
list of QSOs, the initial optical positions of those quasars are found in the
USNO B1.0 and GSC2.3 catalogs, and from the SDSS DR5. The initial positions are
next placed onto UCAC2-based reference frames, following by an alignment with
the ICRF, to which were added the most precise sources from the VLBA calibrator
list and the VLA calibrator list - when reliable optical counterparts exist.
Finally, the LQRF axes are inspected through spherical harmonics, contemplating
to define right ascension, declination and magnitude terms. The LQRF contains
J2000 referred equatorial coordinates for 100,165 quasars, well represented
across the sky, from -83.5 to +88.5 degrees in declination, and with 10 arcmin
being the average distance between adjacent elements. The global alignment with
the ICRF is 1.5 mas, and the individual position accuracies are represented by
a Poisson distribution that peaks at 139 mas in right ascension and 130 mas in
declination. It is complemented by redshift and photometry information from the
LQAC. The LQRF is designed to be an astrometric frame, but it is also the basis
for the GAIA mission initial quasars' list, and can be used as a test bench for
quasars' space distribution and luminosity function studies.Comment: 23 pages, 23 figures, 6 tables Accepted for publication by Astronomy
& Astrophysics, on 25 May 200
- âŠ