93,370 research outputs found

    Wide field weak lensing observations of A1835 and A2204

    Full text link
    We present mass reconstructions from weak lensing for the galaxy clusters A1835 and A2204 over 34'x34' fields using data from the ESO/MPG Wide Field Imager. Using a background galaxy population of 22<R<25.5 we detect the gravitational shear of A1835 at 8.8 sigma significance, and obtain best-fit mass profiles of sigma_v=1233^{+66}_{-70} km/s for a singular isothermal sphere model and r_{200}=1550 h^{-1} kpc, c=2.96 for a `universal' CDM profile. Using a color-selected background galaxy population of 22<R<25.8 we detect the gravitational shear of A2204 at 7.2 sigma significance, and obtain best-fit mass profiles of sigma_v=1035^{+65}_{-71} km/s for a SIS model and r_{200}=1310 h^{-1} km/s, c=6.3 for a `universal' CDM profile. The gravitational shear at distances greater than 10' is significantly detected for both clusters. The best fit weak lensing cluster masses agree well with both X-ray and dynamical mass measurements, although the central concentration of A1835 is much lower in the weak lensing mass profile than that measured by recent Chandra results. We suggest that this lower concentration is most likely a combination of contamination of the 'background' galaxy population with cluster dwarf galaxies and the effect of a prolate or tri-axial cluster core with the major axis lying near the plane of the sky. We also detect a number of additional structures at moderate significance, some of which appear to be sub-haloes associated with the clusters.Comment: accepted to A&A, 14 pages, 13 figures, version with higher quality images can be found at http://www.uni-bonn.de/~clow

    HTS quasiparticle injection devices with large current gain at 77 K

    Get PDF
    Recent progress on the development of planar QP-injection devices using YBCO and STO as an epitaxial injection barrier will be discussed. The main problem for HTS injection devices is to grow reliably a well defined, ultra-thin tunneling barrier suitable for QP tunneling. For this purpose, we used inverted cylindrical magnetron sputtering to first optimize the smoothness of our YBCO films by controlling tightly an relevant sputtering conditions. We are able to prepare smooth (001) YBCO films on (001) STO substrates on a routine basis with an average roughness varying between 1 and 2 nm. With these flat YBCO films both planar as well as grain boundary junctions were fabricated using epitaxial STO barriers between 2 and 8 nm thick and a 50 nm of Au counter electrode. Planar junctions with 6 nm STO barriers were in most cases fully insulating, in some cases, a current gain of up to 7.4 at 77 K was obtained. For 3 nm STO barriers, the highest current gain was 15 at 81 K. The injection results also show a scaling behavior with junction size. Based on the present materials development and device understanding, we consider a current gain of up to 20 at 77 K possibl

    Constrained probability distributions of correlation functions

    Full text link
    Context: Two-point correlation functions are used throughout cosmology as a measure for the statistics of random fields. When used in Bayesian parameter estimation, their likelihood function is usually replaced by a Gaussian approximation. However, this has been shown to be insufficient. Aims: For the case of Gaussian random fields, we search for an exact probability distribution of correlation functions, which could improve the accuracy of future data analyses. Methods: We use a fully analytic approach, first expanding the random field in its Fourier modes, and then calculating the characteristic function. Finally, we derive the probability distribution function using integration by residues. We use a numerical implementation of the full analytic formula to discuss the behaviour of this function. Results: We derive the univariate and bivariate probability distribution function of the correlation functions of a Gaussian random field, and outline how higher joint distributions could be calculated. We give the results in the form of mode expansions, but in one special case we also find a closed-form expression. We calculate the moments of the distribution and, in the univariate case, we discuss the Edgeworth expansion approximation. We also comment on the difficulties in a fast and exact numerical implementation of our results, and on possible future applications.Comment: 13 pages, 5 figures, updated to match version published in A&A (slightly expanded Sects. 5.3 and 6

    Evidence for charged critical behavior in the pyrochlore superconductor RbOs2O6

    Full text link
    We analyze magnetic penetration depth data of the recently discovered superconducting pyrochlore oxide RbOs2O6. Our results strongly suggest that in RbOs2O6 charged critical fuctuations dominate the temperature dependence of the magnetic penetration depth near Tc. This is in contrast to the mean-field behavior observed in conventional superconductors and the uncharged critical behavior found in nearly optimally doped cuprate superconductors. However, this finding agrees with the theoretical predictions for charged criticality and the charged criticality observed in underdoped YBa2Cu3O6.59.Comment: 5 pages, 4 figure

    Pressure and isotope effect on the anisotropy of MgB2_{2}

    Full text link
    We analyze the data for the pressure and boron isotope effect on the temperature dependence of the magnetization near TcT_{c}. Invoking the universal scaling relation for the magnetization at fixed magnetic field it is shown that the relative shift of TcT_{c}, induced by pressure or boron isotope exchange, mirrors essentially that of the anisotropy. This uncovers a novel generic property of anisotropic type II superconductors, inexistent in the isotropic case. For MgB2_{2} it implies that the renormalization of the Fermi surface topology due to pressure or isotope exchange is dominated by a mechanism controlling the anisotropy.Comment: 7 pages, 3 figure

    Electric field effect modulation of transition temperature, mobile carrier density and in-plane penetration depth in NdBa2Cu3O(7-delta) thin films

    Full text link
    We explore the relationship between the critical temperature, T_c, the mobile areal carrier density, n_2D, and the zero temperature magnetic in-plane penetration depth, lambda_ab(0), in very thin underdoped NdBa2Cu3O{7-delta} films near the superconductor to insulator transition using the electric field effect technique. We observe that T_c depends linearly on both, n_2D and lambda_ab(0), the signature of a quantum superconductor to insulator (QSI) transition in two dimensions with znu-bar where z is the dynamic and nu-bar the critical exponent of the in-plane correlation length.Comment: 4 pages, 4 figure

    Partial Coherence Estimation via Spectral Matrix Shrinkage under Quadratic Loss

    Get PDF
    Partial coherence is an important quantity derived from spectral or precision matrices and is used in seismology, meteorology, oceanography, neuroscience and elsewhere. If the number of complex degrees of freedom only slightly exceeds the dimension of the multivariate stationary time series, spectral matrices are poorly conditioned and shrinkage techniques suggest themselves. When true partial coherencies are quite large then for shrinkage estimators of the diagonal weighting kind it is shown empirically that the minimization of risk using quadratic loss (QL) leads to oracle partial coherence estimators superior to those derived by minimizing risk using Hilbert-Schmidt (HS) loss. When true partial coherencies are small the methods behave similarly. We derive two new QL estimators for spectral matrices, and new QL and HS estimators for precision matrices. In addition for the full estimation (non-oracle) case where certain trace expressions must also be estimated, we examine the behaviour of three different QL estimators, the precision matrix one seeming particularly robust and reliable. For the empirical study we carry out exact simulations derived from real EEG data for two individuals, one having large, and the other small, partial coherencies. This ensures our study covers cases of real-world relevance
    corecore