38,097 research outputs found
Recommended from our members
A unified model of the electrical power network
Traditionally, the different infrastructure layers, technologies and management activities associated with the design, control and protection operation of the Electrical Power Systems have been supported by numerous independent models of the real world network. As a result of increasing competition in this sector, however, the integration of technologies in the network and the coordination of complex management processes have become of vital importance for all electrical power companies.
The aim of the research outlined in this paper is to develop a single network model which will unify the generation, transmission and distribution infrastructure layers and the various alternative implementation technologies. This 'unified model' approach can support ,for example, network fault, reliability and performance analysis. This paper introduces the basic network structures, describes an object-oriented modelling approach and outlines possible applications of the unified model
Recommended from our members
Update of an early warning fault detection method using artificial intelligence techniques
This presentation describes a research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. An AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector for this early warning fault detection device only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system. Artificial Neural Networks (ANNs) are being used as the core of the fault detector. In an earlier paper [11], a computer simulated medium length transmission line has been tested by the detector and the results clearly demonstrate the capability of the detector. Today’s presentation considers a case study illustrating the suitability of this AI Technique when applied to a distribution transformer. Furthermore, an evolutionary optimisation strategy to train ANNs is also briefly discussed in this presentation, together with a ‘crystal ball’ view of future developments in the operation and monitoring of transmission systems in the next millennium
Recommended from our members
Power system fault prediction using artificial neural networks
The medium term goal of the research reported in this paper was the development of a major in-house suite of strategic computer aided network simulation and decision support tools to improve the management of power systems. This paper describes a preliminary research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. To achieve this goal, an AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system . Simulation will normally take place using equivalent circuit representation. Artificial Neural Networks (ANNs) are used to construct a hierarchical feed-forward structure which is the most important component in the fault detector. Simulation of a transmission line (2-port circuit ) has already been carried out and preliminary results using this system are promising. This approach provided satisfactory results with accuracy of 95% or higher
Rapidly reconfigurable slow-light system based on off-resonant Raman absorption
We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each
Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines
all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with
low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates
Recommended from our members
Early warning fault detection using artificial intelligent methods
This paper describes a research investigation to access the feasibility of using an Artificial Intelligence (AI) method to predict and detect faults at an early stage in power systems. An AI based detector has been developed to monitor and predict faults at an early stage on particular sections of power systems. The detector for this early warning fault detection device only requires external measurements taken from the input and output nodes of the power system. The AI detection system is capable of rapidly predicting a malfunction within the system. Artificial Neural Networks (ANNs) are being used as the core of the fault detector. A simulated medium length transmission line has been tested by the detector and the results demonstrate the capability of the detector. Furthermore, comments on an evolutionary technique as the optimisation strategy for ANNs are included in this paper
In situ analysis for intelligent control
We report a pilot study on in situ analysis of backscatter data for intelligent control of a scientific instrument on an Autonomous Underwater Vehicle (AUV) carried out at the Monterey Bay Aquarium Research Institute (MBARI). The objective of the study is to investigate techniques which use machine intelligence to enable event-response scenarios. Specifically we analyse a set of techniques for automated sample acquisition in the water-column using an electro-mechanical "Gulper", designed at MBARI. This is a syringe-like sampling device, carried onboard an AUV. The techniques we use in this study are clustering algorithms, intended to identify the important distinguishing characteristics of bodies of points within a data sample. We demonstrate that the complementary features of two clustering approaches can offer robust identification of interesting features in the water-column, which, in turn, can support automatic event-response control in the use of the Gulper
Automated parameters for troubled-cell indicators using outlier detection
In Vuik and Ryan (2014) we studied the use of troubled-cell indicators for discontinuity detection in nonlinear hyperbolic partial differential equations and introduced a new multiwavelet technique to detect troubled cells. We found that these methods perform well as long as a suitable, problem-dependent parameter is chosen. This parameter is used in a threshold which decides whether or not to detect an element as a troubled cell. Until now, these parameters could not be chosen automatically. The choice of the parameter has impact on the approximation: it determines the strictness of the troubled-cell indicator. An inappropriate choice of the parameter will result in detection (and limiting) of too few or too many elements. The optimal parameter is chosen such that the minimal number of troubled cells is detected and the resulting approximation is free of spurious oscillations. In this paper we will see that for each troubled-cell indicator the sudden increase or decrease of the indicator value with respect to the neighboring values is important for detection. Indication basically reduces to detecting the outliers of a vector (one dimension) or matrix (two dimensions). This is done using Tukey's boxplot approach to detect which coefficients in a vector are straying far beyond others (Tukey, 1977). We provide an algorithm that can be applied to various troubled-cell indication variables. Using this technique the problem-dependent parameter that the original indicator requires is no longer necessary as the parameter will be chosen automatically
Sensitivity of optimum solutions to problem parameters
Derivation of the sensitivity equations that yield the sensitivity derivatives directly, which avoids the costly and inaccurate perturb-and-reoptimize approach, is discussed and solvability of the equations is examined. The equations apply to optimum solutions obtained by direct search methods as well as those generated by procedures of the sequential unconstrained minimization technique class. Applications are discussed for the use of the sensitivity derivatives in extrapolation of the optimal objective function and design variable values for incremented parameters, optimization with multiple objectives, and decomposition of large optimization problems
Recommended from our members
Digital measurement of lightning impulse parameters using curving fitting algorithms
This paper describes the application of curve fitting algorithms to aid the evaluation of lightning impulse parameters. A number of popular curve fitting algorithms have been evaluated and compared. Investigations using the genetic algorithm and other optimisation methods for the purpose of curve fitting have also been carried out and will be described
- …