10,262 research outputs found
Time- and depth-wise trophic niche shifts in Antarctic benthos
Climate change is expected to affect resource-consumer interactions underlying stability in polar food webs. Polar benthic organisms have adapted to the marked seasonality characterising their habitats by concentrating foraging and reproductive activity in summer months, when inputs from sympagic and pelagic producers increase. While this enables the persistence of biodiverse food webs, the mechanisms underlying changes in resource use and nutrient transfer are poorly understood. Thus, our understanding of how temporal and spatial variations in the supply of resources may affect food web structure and functioning is limited. By means of C and N isotopic analyses of two key Antarctic benthic consumers (Adamussium colbecki, Bivalvia, and Sterechinus neumayeri, Echinoidea) and Bayesian mixing models, we describe changes in trophic niche and nutrient transfer across trophic levels associated with the long- and short-term diet and body size of specimens sampled in midsummer in both shallow and deep waters. Samplings occurred soon after the sea-ice broke up at Tethys Bay, an area characterised by extreme seasonality in sea-ice coverage and productivity in the Ross Sea. In the long term, the trophic niche was broader and variation between specimens was greater, with intermediate-size specimens generally consuming a higher number of resources than small and large specimens. The coupling of energy channels in the food web was consequently more direct than in the short term. Sediment and benthic algae were more frequently consumed in the long term, before the sea-ice broke up, while consumers specialised on sympagic algae and plankton in the short term. Regardless of the time scale, sympagic algae were more frequently consumed in shallow waters, while plankton was more frequently consumed in deep waters. Our results suggest a strong temporal relationship between resource availability and the trophic niche of benthic consumers in Antarctica. Potential climate-driven changes in the timing and quality of nutrient inputs may have profound implications for the structure of polar food webs and the persistence of their constituent species, which have adapted their trophic niches to a highly predictable schedule of resource inputs
Peri-implant diseases and metabolic syndrome components: a systematic review
OBJECTIVE:
Metabolic syndrome (MetS) is defined as a spectrum of conditions associated with an increased risk of developing CVD and type 2 diabetes. MetS include: hyperglycemia, hypertension, visceral obesity, dyslipidemia with elevated values of triglycerides (TG) and low levels of HDL. The aim of this review is to provide current knowledge of the relationship between MetS, its components and peri-implant diseases.
MATERIALS AND METHODS:
An electronic literature search was conducted in the English language in several databases. The Newcastle-Ottawa Scale was used for quality assessment of cohort and cross-sectional studies; while systematic reviews were evaluated through AMSTAR; results were reported according to the PRISMA Statement.
RESULTS:
A total of 272 records were identified through database searching, six studies were included for qualitative analysis. No study directly related to MetS was found, there was inconsistent and controversial evidence regarding association with cardiovascular disease. A higher risk of peri-implantitis was detected in people with hyperglycemia.
CONCLUSIONS:
Future research should be orientated in assessing the risk of peri-implant diseases, evaluating patient's therapeutic response, analyzing directionality of the relationship between MetS, its components and biologic implant complications.
Few studies have investigated the possible relationship between systemic conditions and peri-implant diseases. The aim of this review is to present, in a systematic manner, current evidence and knowledge regarding possible association between cardiovascular disease and implant biologic complications. Out of the one-hundred-eighty-nine studies screened, just five studies were selected for qualitative analysis: three cohort studies (one prospective and two retrospectives) and two cross-sectional studies. According to their results, there is inconsistent and controversial evidence regarding association of cardiovascular disease and implant biologic complications. Future research should be orientated in conducting longitudinal studies, evaluating patients affected by cardiovascular disease rehabilitated with dental implants
Microstructural Features in Multicore Cu–Nb Composites
none5siThe study is devoted to heavily drawn multicore Cu–18Nb composites of cylindrical and rectangular shapes. The composites were fabricated by the melt-and-deform method, namely, 600 in situ rods of Cu–18%Nb alloy were assembled in a copper shell and cold-drawn to a diameter of 15.4 mm (e = 10.2) and then rolled into a rectangular shape the size of 3 × 5.8 mm (e = 12.5). The specimens were analyzed from the viewpoints of their microstructure, microhardness, and thermal stability. The methods of SEM, TEM, X-ray analysis, and microhardness measurements were applied. It is demonstrated that, at higher strain, the fiber texture ⟨110⟩Nb∥ ⟨111⟩Cu∥ DD (drawing direction), characteristic of this material, becomes sharper. The distortions of niobium lattice can be observed, namely, the {110} Nb interplanar distance is broadened in longitudinal direction of specimens and compacted in transverse sections. The copper matrix lattice is distorted as well, though its distortions are much less pronounced due to its recrystallization. Evolution of microstructure under annealing consists mainly in the coagulation of ribbon-like Nb filaments and in the vanishing of lattice distortions. The structural changes in Nb filaments start at 300–400 °C, then develop actively at 600 °C and cause considerable decrease of strength at 700–800 °C.openElena N. Popova, Irina L. Deryagina,Evgeniya G. Valova-Zaharevskaya, Ruello Maria Letizia, Vladimir V. PopovElena N., Popova; Irina L., Deryagina; Evgeniya G., Valova-Zaharevskaya; Ruello, Maria Letizia; Vladimir V., Popo
Wavelike patterns in precessing elliptical rings for swarming systems
A continuum model for a swarm of devices is investigated with the devices moving along precessing elliptical Earth-centered orbits. Wavelike patterns in these precessing elliptical rings with peaks in swarm density are found that can be used to provide enhanced coverage for Earth observation and space science. Two orbital models are considered for the purpose of comparison: perturbed by J2J2 and solar radiation pressure, and perturbed by J2J2 and J3J3, respectively, each with a different frozen eccentricity. By removing osculating orbital elements, only the long-period orbit eccentricity and argument of perigee are chosen to derive closed-form solutions to the continuum model for the swarm density. Zero-density lines in the swarm density are found, as well as infinite density at certain boundaries. Comparison between the analytic and numerical number density evolutions is made to yield the range of applicable eccentricity based on the maximum error tolerance, as well as the minimum number of swarm members required to approximate continuous evolution. Closed-form solutions are then derived to predict the number density of swarm devices for magnetic-tail measurement and Earth-observation applications
Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays
We exposed water samples from a recreational lake dominated by the cyanobacterium Planktothrix agardhii to different concentrations of hydrogen peroxide (H2O2). An addition of 0.33 mg·L−1 of H2O2 was the lowest effective dose for the decay of chlorophyll-a concentration to half of the original in 14 h with light and 17 h in experiments without light. With 3.33 mg·L−1 of H2O2, the values of the chemical oxygen demand (COD) decreased to half at 36 and 126 h in experiments performed with and without light, respectively. With increasing H2O2, there is a decrease in the total and faecal coliform, and this effect was made more pronounced by light. Total and faecal coliform were inhibited completely 48 h after addition of 3.33 mg·L−1 H2O2. Although the densities of cyanobacterial cells exposed to H2O2 did not decrease, transmission electron microscope observation of the trichomes showed several stages of degeneration, and the cells were collapsed after 48 h of 3.33 mg·L−1 of H2O2 addition in the presence of light. Our results demonstrate that H2O2 could be potentially used in hypertrophic systems because it not only collapses cyanobacterial cells and coliform bacteria but may also reduce chlorophyll-a content and chemical oxygen demand.Fil: Bauzá, Letizia. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Aguilera, Anabella. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y BiotecnologÃa; Argentina. Fundación para Investigaciones Biológicas Aplicadas; ArgentinaFil: Etchenique, Roberto Argentino. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division FicologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Andrinolo, Dario. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Giannuzzi, Leda. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones CientÃficas. Centro de Investigación y Desarrollo en CriotecnologÃa de Alimentos. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en CriotecnologÃa de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en CriotecnologÃa de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentin
Analysis of short-term blood pressure variability in pheochromocytoma/paraganglioma patients
Data on short-term blood pressure variability (BPV), which is a well-established cardiovascular prognostic tool, in pheochromocytoma and paraganglioma (PPGL) patients is still lack and conflicting. We retrospectively evaluated 23 PPGL patients referred to our unit from 2010 to 2019 to analyze 24 h ambulatory blood pressure monitoring (24-h ABPM)-derived markers of short-term BPV, before and after surgical treatment. PPGL diagnosis was assessed according to guidelines and confirmed by histologic examination. The 24-h ABPM-derived markers of short-term BPV included: circadian pressure rhythm; standard deviation (SD) and weighted SD (wSD) of 24-h, daytime, and night-time systolic and diastolic blood pressure (BP); average real variability (ARV) of 24-h, daytime, and night-time systolic and diastolic BP. 7 males and 16 females of 53 ± 18 years old were evaluated. After surgical resection of PPGL we found a significant decrease in 24-h systolic BP ARV (8.8 ± 1.6 vs. 7.6 ± 1.3 mmHg, p < 0.001), in 24-h diastolic BP ARV (7.5 ± 1.6 vs. 6.9 ± 1.4 mmHg, p = 0.031), and in wSD of 24-h diastolic BP (9.7 ± 2.0 vs 8.8 ± 2.1 mmHg, p = 0.050) comparing to baseline measurements. Moreover, baseline 24-h urinary metanephrines significantly correlated with wSD of both 24-h systolic and diastolic BP. Our study highlights as PPGL patients, after proper treatment, show a significant decrease in some short-term BPV markers, which might represent a further cardiovascular risk factor
Are planetary nebulae derived from multiple evolutionary scenarios?
Our understanding of planetary nebulae has been significantly enhanced as a
result of several recent large surveys (Parker et al., these proceedings).
These new discoveries suggest that the `PN phenomenon' is in fact more
heterogeneous than previously envisaged. Even after the careful elimination of
mimics from Galactic PN catalogues, there remains a surprising diversity in the
population of PNe and especially their central stars. Indeed, several
evolutionary scenarios are implicated in the formation of objects presently
catalogued as PNe. We provide a summary of these evolutionary pathways and give
examples of each. Eventually, a full census of local PNe can be used to
confront both stellar evolution theory and population synthesis models.Comment: 4 pages, 1 figure. To be published in Planetary Nebulae: an Eye to
the Future, Proceedings of IAU Symposium 283, held in Puerto de la Cruz,
Tenerife, Spain, July 25-29 201
- …