668,287 research outputs found

    Dissociation of relativistic 10^{10}C nuclei in nuclear track emulsion

    Full text link
    Dissociation of 1.2 A GeV 10^{10}C nuclei in nuclear track emulsionis is studied. It is shown that most precise angular measurements provided by this technique play a crucial role in the restoration of the excitation spectrum of the 2α\alpha+2p system. Strong contribution of the cascade process 10^{10}C→9\rightarrow ^9B→8\rightarrow ^8Be identified.Comment: 5 pages, 3 figures, conference: The 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 29th August - 3rd September, 201

    Effect of low-pressure storage on the quality of green capsicums (<i>Capsicum annum L.</i>)

    Get PDF
    Green capsicums (Capsicum annum L.) were stored under low pressure (4 kPa) at 10°C for 5 and 11 days with 100% RH. The results showed that the incidence of stem decay under low pressure storage for 5 and 11 days and storage at ambient atmosphere at 20°C for three days lower compared to fruits that were stored at regular atmosphere at 10°C. Fruit that had been stored at low pressure at 10°C had no symptoms of flesh rots for up to 11 days, whilst fruit which had been stored at regular atmosphere at 10°C had 6% flesh rots after 11 days storage at 10°C.There was no difference in flesh firmness and colour retention between fruits stored at low pressure and regular pressure at 10°C. Capsicums stored at low pressure had higher overall acceptability compared to fruit that were stored at regular atmosphere at 10°C. These results demonstrate the potential of low pressure storage as an effective technique to manage capsicum fruit quality, however there was no additional benefit when fruits were stored at low pressure for more than 5 days

    The application of low pressure storage to maintain the quality of zucchinis

    Get PDF
    Zucchini (Cucurbita pepo var. cylindrica) were stored at low pressure (4 kPa) at 10°C at 100% relative humidity for 11 days. Fruit quality was examined upon removal and after being transferred to normal atmosphere (101 kPa) at 20°C for three days. Zucchinis stored at low pressure exhibited a 50% reduction in stem-end browning compared with fruit stored at atmospheric pressure (101 kPa) at 10°C. The benefit of low pressure treatment was maintained after the additional three days storage at normal atmospheric pressure at 20°C. Indeed, low pressure treated fruit transferred to regular atmosphere 20°C for three days possessed a significantly lower incidence of postharvest rot compared to fruit stored at regular atmospheric pressure at 10°C. Zucchinis stored at low pressure showed higher levels of acceptability (28% and 36%, respectively) compared to fruit stored at regular atmospheres at 10°C for both assessment times.<br/

    Kepler-10 c: a 2.2 Earth Radius Transiting Planet in a Multiple System

    Get PDF
    The Kepler mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45 day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 μm. When combined, they yield a transit depth of 344 ± 85 ppm that is consistent with the depth in the Kepler passband (376 ± 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high-resolution imaging and spectroscopy, we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 × 10^(–5) that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be R_p = 2.227^(+0.052)_(–0.057) R_⊕ (in which the error includes the uncertainty in the stellar properties), but currently available radial-velocity measurements only place an upper limit on its mass of about 20 M_⊕. Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical "validation" of a transiting exoplanet, as opposed to the usual "confirmation" that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler's smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or impractical with the sensitivity of current instrumentation

    Exposure of Nuclear Track Emulsion to a Mixed Beam of Relativistic 12^{12}N, 10^{10}C, and 7^7Be Nuclei

    Full text link
    A nuclear track emulsion was exposed to a mixed beam of relativistic 12^{12}N, 10^{10}C, and 7^7Be nuclei having a momentum of 2 GeV/cc per nucleon. The beam was formed upon charge exchange processes involving 12^{12}C primary nuclei and their fragmentation. An analysis indicates that 10^{10}C nuclei are dominant in the beam and that 12^{12}N nuclei are present in it. The charge topology of relativistic fragments in the coherent dissociation of these nuclei is presented.Comment: ISSN 1063-7788, Pleiades Publishing, Ltd., 201
    • …
    corecore