11 research outputs found

    Polycomb-mediated silencing in neuroendocrine prostate cancer

    Get PDF
    BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PCa) for which the median survival remains less than a year. Current treatments are only palliative in nature, and the lack of suitable pre-clinical models has hampered previous efforts to develop novel therapeutic strategies. Addressing this need, we have recently established the first in vivo model of complete neuroendocrine transdifferentiation using patient-derived xenografts. Few genetic differences were observed between parental PCa and relapsed NEPC, suggesting that NEPC likely results from alterations that are epigenetic in nature. Thus, we sought to identify targetable epigenetic regulators whose expression was elevated in NEPC using genome-wide profiling of patient-derived xenografts and clinical samples. RESULTS: Our data indicate that multiple members of the polycomb group (PcG) family of transcriptional repressors were selectively upregulated in NEPC. Notably, CBX2 and EZH2 were consistently the most highly overexpressed epigenetic regulators across multiple datasets from clinical and xenograft tumor tissues. Given the striking upregulation of PcG genes and other transcriptional repressors, we derived a 185-gene list termed 'neuroendocrine-associated repression signature' (NEARS) by overlapping transcripts downregulated across multiple in vivo NEPC models. In line with the striking upregulation of PcG family members, NEARS was preferentially enriched with PcG target genes, suggesting a driving role for PcG silencing in NEPC. Importantly, NEARS was significantly associated with high-grade tumors, metastatic progression, and poor outcome in multiple clinical datasets, consistent with extensive literature linking PcG genes and aggressive disease progression. CONCLUSIONS: We have explored the epigenetic landscape of NEPC and provided evidence of increased PcG-mediated silencing associated with aberrant transcriptional regulation of key differentiation genes. Our results position CBX2 and EZH2 as potential therapeutic targets in NEPC, providing opportunities to explore novel strategies aimed at reversing epigenetic alterations driving this lethal disease

    Mechanisms of Primary Drug Resistance in FGFR1

    No full text
    Purpose: The 8p12-p11 locus is frequently amplified in squamous cell lung cancer (SQLC); the receptor tyrosine kinase fibroblast growth factor receptor 1 (FGFR1) being one of the most prominent targets of this amplification. Thus, small molecules inhibiting FGFRs have been employed to treat FGFR1-amplified SQLC. However, only about 11% of such FGFR1-amplified tumors respond to single-agent FGFR inhibition and several tumors exhibited insufficient tumor shrinkage, compatible with the existence of drug-resistant tumor cells.Experimental Design: To investigate possible mechanisms of resistance to FGFR inhibition, we studied the lung cancer cell lines DMS114 and H1581. Both cell lines are highly sensitive to three different FGFR inhibitors, but exhibit sustained residual cellular viability under treatment, indicating a subpopulation of existing drug-resistant cells. We isolated these subpopulations by treating the cells with constant high doses of FGFR inhibitors.Results: The FGFR inhibitor-resistant cells were cross-resistant and characterized by sustained MAPK pathway activation. In drug-resistant H1581 cells, we identified NRAS amplification and DUSP6 deletion, leading to MAPK pathway reactivation. Furthermore, we detected subclonal NRAS amplifications in 3 of 20 (15%) primary human FGFR1-amplified SQLC specimens. In contrast, drug-resistant DMS114 cells exhibited transcriptional upregulation of MET that drove MAPK pathway reactivation. As a consequence, we demonstrate that rational combination therapies resensitize resistant cells to treatment with FGFR inhibitors.Conclusions: We provide evidence for the existence of diverse mechanisms of primary drug resistance in FGFR1-amplified lung cancer and provide a rational strategy to improve FGFR inhibitor therapies by combination treatment. Clin Cancer Res; 23(18); 5527-36. ©2017 AACR
    corecore