466 research outputs found
Thermodynamics and structure of self-assembled networks
We study a generic model of self-assembling chains which can branch and form
networks with branching points (junctions) of arbitrary functionality. The
physical realizations include physical gels, wormlike micells, dipolar fluids
and microemulsions. The model maps the partition function of a solution of
branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg
magnet in the mathematical limit of zero spin components. The model is solved
in the mean field approximation. It is found that despite the absence of any
specific interaction between the chains, the entropy of the junctions induces
an effective attraction between the monomers, which in the case of three-fold
junctions leads to a first order reentrant phase separation between a dilute
phase consisting mainly of single chains, and a dense network, or two network
phases. Independent of the phase separation, we predict the percolation
(connectivity) transition at which an infinite network is formed that partially
overlaps with the first-order transition. The percolation transition is a
continuous, non thermodynamic transition that describes a change in the
topology of the system. Our treatment which predicts both the thermodynamic
phase equilibria as well as the spatial correlations in the system allows us to
treat both the phase separation and the percolation threshold within the same
framework. The density-density correlation correlation has a usual
Ornstein-Zernicke form at low monomer densities. At higher densities, a peak
emerges in the structure factor, signifying an onset of medium-range order in
the system. Implications of the results for different physical systems are
discussed.Comment: Submitted to Phys. Rev.
Ising Universality in Three Dimensions: A Monte Carlo Study
We investigate three Ising models on the simple cubic lattice by means of
Monte Carlo methods and finite-size scaling. These models are the spin-1/2
Ising model with nearest-neighbor interactions, a spin-1/2 model with
nearest-neighbor and third-neighbor interactions, and a spin-1 model with
nearest-neighbor interactions. The results are in accurate agreement with the
hypothesis of universality. Analysis of the finite-size scaling behavior
reveals corrections beyond those caused by the leading irrelevant scaling
field. We find that the correction-to-scaling amplitudes are strongly dependent
on the introduction of further-neighbor interactions or a third spin state. In
a spin-1 Ising model, these corrections appear to be very small. This is very
helpful for the determination of the universal constants of the Ising model.
The renormalization exponents of the Ising model are determined as y_t = 1.587
(2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q =
^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry.
The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546
(10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal
of Physics A
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans
Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement
Rediscovering vitamin D
Over the past 2 years there has been a radical change in standard clinical practice with respect to vitamin D. As a result of a growing body of knowledgeable physicians are assessing the vitamin D nutritional status of their patients and prescribing aggressive repletion regimens of a vitamin D supplement. The present paper summarizes some basic information about this essential nutrient and reviews some of the more recent data implicating vitamin D deficiency in disease etiology with an emphasis on cardiovascular disease and cancer. Finally a rational approach to the dosing of vitamin D in different patient populations is provided
Allyl Isothiocyanate that Induces GST and UGT Expression Confers Oxidative Stress Resistance on C. elegans, as Demonstrated by Nematode Biosensor
Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC.We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits
- …