9 research outputs found

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    A symmetry for vanishing cosmological constant

    Get PDF
    Two different realizations of a symmetry principle that impose a zero cosmological constant in an extra-dimensional set-up are studied. The symmetry is identified by multiplication of the metric by minus one. In the first realization of the symmetry this is provided by a symmetry transformation that multiplies the coordinates by the imaginary number i. In the second realization this is accomplished by a symmetry transformation that multiplies the metric tensor by minus one. In both realizations of the symmetry the requirement of the invariance of the gravitational action under the symmetry selects out the dimensions given by D = 2(2n+1), n=0,1,2,... and forbids a bulk cosmological constant. Another attractive aspect of the symmetry is that it seems to be more promising for quantization when compared to the usual scale symmetry. The second realization of the symmetry is more attractive in that it is posible to make a possible brane cosmological constant zero in a simple way by using the same symmetry, and the symmetry may be identified by reflection symmetry in extra dimensions.Comment: Talk in the conference IRGAC 2006, 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelon

    Complex Lagrangians and phantom cosmology

    Get PDF
    Motivated by the generalization of quantum theory for the case of non-Hermitian Hamiltonians with PT symmetry, we show how a classical cosmological model describes a smooth transition from ordinary dark energy to the phantom one. The model is based on a classical complex Lagrangian of a scalar field. Specific symmetry properties analogous to PT in non-Hermitian quantum mechanics lead to purely real equation of motion.Comment: 11 pages, to be published in J.Phys.A, refs. adde

    Brane Induced Gravity, its Ghost and the Cosmological Constant Problem

    Full text link
    "Brane Induced Gravity" is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.Comment: v2: LaTeX, JHEP style, 41 pages, 3 eps figures. Partly rewritten to improve presentation, results unchanged, published versio

    Nonsaturated Holographic Dark Energy

    Full text link
    It has been well established by today that the concept of holographic dark energy (HDE) does entail a serious candidate for the dark energy of the universe. Here we deal with models where the holographic bound for dark energy is not saturated for a large portion of the history of the universe. This is particularly compelling when the IR cutoff is set by the Hubble scale, since otherwise a transition from a decelerated to an accelerated era cannot be obtained for a spatially flat universe. We demonstrate by three generic but disparate dynamical models, two of them containing a variable Newton constant, that transition between the two eras is always obtained for the IR cutoff in the form of the Hubble scale and the nonsaturated HDE. We also give arguments of why such a choice for the dark energy is more consistent and favored over the widely accepted saturated form.Comment: 9 pages, minor revision, to appear in JCA

    Invariance under complex transformations, and its relevance to the cosmological constant problem

    No full text
    In this paper we study a new symmetry argument that results in a vacuum state with strictly vanishing vacuum energy. This argument exploits the well-known feature that de Sitter and Anti- de Sitter space are related by analytic continuation. When we drop boundary and hermiticity conditions on quantum fields, we get as many negative as positive energy states, which are related by transformations to complex space. The paper does not directly solve the cosmological constant problem, but explores a new direction that appears worthwhile
    corecore