466 research outputs found

    Differences in hearing acuity among “normal-hearing” young adults modulate the neural basis for speech comprehension

    Get PDF
    AbstractIn this paper, we investigate how subtle differences in hearing acuity affect the neural systems supporting speech processing in young adults. Auditory sentence comprehension requires perceiving a complex acoustic signal and performing linguistic operations to extract the correct meaning. We used functional MRI to monitor human brain activity while adults aged 18–41 years listened to spoken sentences. The sentences varied in their level of syntactic processing demands, containing either a subject-relative or object-relative center-embedded clause. All participants self-reported normal hearing, confirmed by audiometric testing, with some variation within a clinically normal range. We found that participants showed activity related to sentence processing in a left-lateralized frontotemporal network. Although accuracy was generally high, participants still made some errors, which were associated with increased activity in bilateral cingulo-opercular and frontoparietal attention networks. A whole-brain regression analysis revealed that activity in a right anterior middle frontal gyrus (aMFG) component of the frontoparietal attention network was related to individual differences in hearing acuity, such that listeners with poorer hearing showed greater recruitment of this region when successfully understanding a sentence. The activity in right aMFGs for listeners with poor hearing did not differ as a function of sentence type, suggesting a general mechanism that is independent of linguistic processing demands. Our results suggest that even modest variations in hearing ability impact the systems supporting auditory speech comprehension, and that auditory sentence comprehension entails the coordination of a left perisylvian network that is sensitive to linguistic variation with an executive attention network that responds to acoustic challenge.</jats:p

    Auditory language comprehension in children with developmental dyslexia: Evidence from event-related brain potentials

    Get PDF
    In the present study, event-related brain potentials (ERPs) were used to compare auditory sentence comprehension in 16 children with developmental dyslexia (age 9-12 years) and unimpaired controls matched on age, sex, and nonverbal intelligence. Passive sentences were presented, which were either correct or contained a syntactic violation (phrase structure) or a semantic violation (selectional restriction). In an overall sentence correctness judgment task, both control and dyslexic children performed well. In the ERPs, control children and dyslexic children demonstrated a similar N400 component for the semantic violation. For the syntactic violation, control children demonstrated a combined pattern, consisting of an early starting bilaterally distributed anterior negativity and a late centro-parietal positivity (P600). Dyslexic children showed a different pattern that is characterized by a delayed left lateralized anterior negativity, followed by a P600. These data indicate that dyslexic children do not differ from unimpaired controls with respect to semantic integration processes (N400) or controlled processes of syntactic reanalyses (P600) during auditory sentence comprehension. However, early and presumably highly automatic processes of phrase structure building reflected in the anterior negativity are delayed in dyslexic children. Moreover, the differences in hemispheric distribution of the syntactic negativity indicate different underlying processes in dyslexic children and controls. The bilateral distribution in controls suggests an involvement of right hemispherically established prosodic processes in addition to the left hemispherically localized syntactic processes, supporting the view that prosodic information may be used to facilitate syntactic processing during normal comprehension. The left hemispheric distribution observed for dyslexic children, in contrast, suggests that these children do not rely on information about the prosodic contour during auditory sentence comprehension as much as controls do. This finding points toward a phonological impairment in dyslexic children that might hamper the development of syntactic processes

    Pitch accents create dissociable syntactic and semantic expectations during sentence processing

    Get PDF
    The language system uses syntactic, semantic, as well as prosodic cues to efficiently guide auditory sentence comprehension. Prosodic cues, such as pitch accents, can build expectations about upcoming sentence elements. This study investigates to what extent syntactic and semantic expectations generated by pitch accents can be dissociated and if so, which cues take precedence when contradictory information is present. We used sentences in which one out of two nominal constituents was placed in contrastive focus with a third one. All noun phrases carried overt syntactic information (case-marking of the determiner) and semantic information (typicality of the thematic role of the noun). Two experiments (a sentence comprehension and a sentence completion task) show that focus, marked by pitch accents, established expectations in both syntactic and semantic domains. However, only the syntactic expectations, when violated, were strong enough to interfere with sentence comprehension. Furthermore, when contradictory cues occurred in the same sentence, the local syntactic cue (case-marking) took precedence over the semantic cue (thematic role), and overwrote previous information cued by prosody. The findings indicate that during auditory sentence comprehension the processing system integrates different sources of information for argument role assignment, yet primarily relies on syntactic information

    Segregating early physical and syntactic processes in auditory sentence comprehension

    Get PDF
    Auditory language comprehension involves physical as well as syntactic processing. The present study examined whether early physical and syntactic processes in spoken sentence comprehension can be segregated using event-related brain potentials (ERPs). In the physical manipulation condition, the terminal word of the sentence was presented either from the same or from a different location to the preceding sentence fragment. In the syntactic manipulation condition, the terminal word was either a syntactically correct continuation of the preceding sentence fragment or violated syntactic constraints. These two factors were completely crossed. Physical deviances elicited the mismatch negativity (MMN) and syntactic deviances the early syntax-related negativity, both deviance-related components of the ERP. Sentences which violated physical as well as syntactic constraints elicited a negativity which was larger than that elicited by only a physical or only a syntactic deviance. The elicitation of the MMN in connected speech demonstrates that this component can be used as a probe for auditory change-detection even in ecologically highly valid situations. The increase of deviance-related effects with double deviants suggests that the early physical and syntactic processing systems act, to a high degree, in parallel and independently of each other

    Lesion correlates of auditory sentence comprehension deficits in post-stroke aphasia

    Get PDF
    Auditory sentence comprehension requires coordination of multiple levels of processing: auditory-phonological perception, lexical-semantic comprehension, syntactic parsing and discourse construction, as well as executive functions such as verbal working memory (WM) and cognitive control. This study examined the lesion correlates of sentence comprehension deficits in post-stroke aphasia, building on prior work on this topic by using a different and clinically-relevant measure of sentence comprehension (the Token Test) and multivariate (SCCAN) and connectome-based lesion-symptom mapping methods. The key findings were that lesions in the posterior superior temporal lobe and inferior frontal gyrus (pars triangularis) were associated with sentence comprehension deficits, which was observed in both mass univariate and multivariate lesion-symptom mapping. Graph theoretic measures of connectome disruption were not statistically significantly associated with sentence comprehension deficits after accounting for overall lesion size

    The role of working memory and contextual constraints in children's processing of relative clauses

    Get PDF
    An auditory sentence comprehension task investigated the extent to which the integration of contextual and structural cues was mediated by verbal memory span with 32 English-speaking 6- to 8-year old children. Spoken relative clause sentences were accompanied by visual context pictures which fully (depicting the actions described within the relative clause) or partially (depicting several referents) met the pragmatic assumptions of relativisation. Comprehension of the main and relative clauses of centre-embedded and right-branching structures was compared for each context. Pragmatically-appropriate contexts exerted a positive effect on relative clause comprehension, but children with higher memory spans demonstrated a further benefit for main clauses. Comprehension for centre-embedded main clauses was found to be very poor, independently of either context or memory span. The results suggest that children have access to adult-like linguistic processing mechanisms, and that sensitivity to extra-linguistic cues is evident in young children and develops as cognitive capacity increases

    Neural connectivity in syntactic movement processing

    Get PDF
    Linguistic theory suggests non-canonical sentences subvert the dominant agent-verb-theme order in English via displacement of sentence constituents to argument (NP-movement) or non-argument positions (wh-movement). Both processes have been associated with the left inferior frontal gyrus and posterior superior temporal gyrus, but differences in neural activity and connectivity between movement types have not been investigated. In the current study, functional magnetic resonance imaging data were acquired from 21 adult participants during an auditory sentence-picture verification task using passive and active sentences contrasted to isolate NP-movement, and object- and subject-cleft sentences contrasted to isolate wh-movement. Then, functional magnetic resonance imaging data from regions common to both movement types were entered into a dynamic causal modeling analysis to examine effective connectivity for wh-movement and NP-movement. Results showed greater left inferior frontal gyrus activation for Wh > NP-movement, but no activation for NP > Wh-movement. Both types of movement elicited activity in the opercular part of the left inferior frontal gyrus, left posterior superior temporal gyrus, and left medial superior frontal gyrus. The dynamic causal modeling analyses indicated that neither movement type significantly modulated the connection from the left inferior frontal gyrus to the left posterior superior temporal gyrus, nor vice-versa, suggesting no connectivity differences between wh- and NP-movement. These findings support the idea that increased complexity of wh-structures, compared to sentences with NP-movement, requires greater engagement of cognitive resources via increased neural activity in the left inferior frontal gyrus, but both movement types engage similar neural networks.This work was supported by the NIH-NIDCD, Clinical Research Center Grant, P50DC012283 (PI: CT), and the Graduate Research Grant and School of Communication Graduate Ignition Grant from Northwestern University (awarded to EE). (P50DC012283 - NIH-NIDCD, Clinical Research Center Grant; Graduate Research Grant and School of Communication Graduate Ignition Grant from Northwestern University)Published versio

    The Effects of Dementia on Language Ability in a Greek-English Bilingual Individual

    Get PDF
    The objective of this project was to understand better how a neurodegenerative disease can impact speech and language in individuals who speak multiple languages. Using a case study approach, we measured language expression and understanding through production, comprehension, and word retrieval in a participant with dementia who spoke Greek and English. To examine speech and language decline over time, we administered two commonly used language tests (Boston Naming Test and Bilingual Aphasia Test) in both Greek and English at four different times across a span of approximately seven months. With the goal of examining bilingualism in relation to neurodegenerative diseases, such as dementia, we sought to determine the effects of dementia on language abilities for this participant
    • 

    corecore