23 research outputs found

    Characterizations and Micro-assembly of Electrostatic Actuators for 3-DOF Micromanipulators in Laser Phonomicrosurgery.

    No full text
    International audienceThis paper presents a design of electrostatic actuators for 3-DOF micromanipulators in robot-assisted laser phonomicrosurgery. By integrating three sets of electrostatic actuators in a vertical configuration, scanning micro-mirror canbe used as a manipulator for laser source. Key enable technology for these miniaturized actuators is microfabrication processes for microelectromechanical systems (MEMS) because the processes can create submicron features with high precision, mass productive, and low cost. Based on precise micromachined electrostatic actuators, the platform is assembled using micro assembly approach. With sizes less than 5 mm x 5 mm x 5 mm, the proposed design has three degree-of-freedom: two rotational motions around the in-plane axis and one out-of-plane translational motion. Static and dynamic analysis of the device is simulated by Finite Element Analysis (FEA) and compared to theoretical calculations. This system preserves outstanding characteristics of electrostatic actuators for fast response and low power consumption. By micro-assembly of the scanning micromirror, the endoscopic systems can be created with a high range of motion and high scanning speed. The target applications of this system include laryngeal microsurgery, optical coherence tomography (OCT), and minimally invasive surgeries (MIS)

    A hybrid Electrostatic-piezoelectric integrative actuated microsystem for robot-assisted laser phonomicrosurgery.

    No full text
    International audienceSeveral forms of microactuators have been investigated for microrobots, for example, electrothermal actuators [1,2], electrostatic actuators [3], piezoelectric actuators [4], electromagnetic actuators [5], acoustic actuators, pneumatics actuators, and shape memory alloys. Key enable technology for these miniaturized actuators is microfabrication processes for microelectromechanical systems because the processes can create submicron features with high precision, mass productive, and low cost. Examples of fabricated systems have been developed and some medical applications have been reported [1-5]. This talk provides literature reviews to compare advantages and disadvantages of micro actuators for biomedical applications. Then, we propose a new device that is devoted to medical applications (laser phonomicrosurgery) within the European ÎĽRALP-project [6]. Based on precise micromachined electrostatic and piezoelectric actuators, the platform is assembled using micro assembly approach. With sizes less than 5mm x 5mm x 5mm, the proposed design has three degree-of-freedom: two rotational motions around the in-plane axis and one out-of-plane translational motion. Static and dynamic analysis of the device is simulated by Finite Element Analysis and compared to theoretical calculations. Fig. 1 depicts the CAD-scheme of the designed device. This system preserves outstanding characteristics of both actuators for fast response and low power consumption. Moreover, challenge of electrostatic actuator for a high driving voltage and challenges of piezoelectric actuator for hysteresis effects and charge leakage problems are reduced with collaborated controls and operations of two sets of actuators

    Microsurgery robots: addressing the needs of high-precision surgical interventions

    Get PDF
    Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life

    Micromechanisms for Laser Phonosurgery : A Review of Actuators and Compliants Parts.

    No full text
    International audiencePhonosurgery has to do with a surgical procedure, performed with an aim to enhance the voice. Common anomalies of the vocal fold includes a wide variety of pathologies such as nodules, polyps, cysts, and cancer. The method most commonly used of phonosurgery is done using a laser beam. The laser beam source is located approximately fourty centimeters away from the vocal cords. With this long distance, a small accuracy error would strongly impact the quality of the intervention. Recent advances in the area of micromechanisms used in medicine have increased the potential for an early detection and a better treatment against vocal folds diseases Using microdevices, micromechanisms can be designed to guide the laser beam nearest to the vocal fold, for an accurate treatment and for minimizing the risk of detriment of the delicate vocal fold structures

    Epipolar geometry for vision-guided laser surgery.

    No full text
    International audienceThe ÎĽRALP project involves the development of a system for endoluminal laser phonosurgery, i.e. surgery of the vocal chords using a laser emitted from inside the larynx. Indeed, in current laryngeal laser surgical procedures, a beam of incision laser is projected on the target position of the soft tissue from the working distance of 400mm by means of a rigid laryngoscope (Fig.1). This yields safety concerns for the patient and staff, as well as limitations to accuracy. More, this so-called laryngeal suspension position of the patient requires an extreme extension of the neck, which makes it painful several days after the operation

    Comparison of tablet-based strategies for incision planning in laser microsurgery

    Get PDF
    Recent research has revealed that incision planning in laser surgery deploying stylus and tablet outperforms stateof-the-art micro-manipulator-based laser control. Providing more detailed quantitation regarding that approach, a comparative study of six tablet-based strategies for laser path planning is presented. Reference strategy is defined by monoscopic visualization and continuous path drawing on a graphics tablet. Further concepts deploying stereoscopic or a synthesized laser view, point-based path definition, real-time teleoperation or a pen display are compared with the reference scenario. Volunteers were asked to redraw and ablate stamped lines on a sample. Performance is assessed by measuring planning accuracy, completion time and ease of use. Results demonstrate that significant differences exist between proposed concepts. The reference strategy provides more accurate incision planning than the stereo or laser view scenario. Real-time teleoperation performs best with respect to completion time without indicating any significant deviation in accuracy and usability. Point-based planning as well as the pen display provide most accurate planning and increased ease of use compared to the reference strategy. As a result, combining the pen display approach with point-based planning has potential to become a powerful strategy because of benefiting from improved hand-eye-coordination on the one hand and from a simple but accurate technique for path definition on the other hand. These findings as well as the overall usability scale indicating high acceptance and consistence of proposed strategies motivate further advanced tablet-based planning in laser microsurgery. © 2015 SPIE

    Introduction

    Get PDF

    Weakly Calibrated Stereoscopic Visual Servoing for Laser Steering: Application to Phonomicrosurgery.

    No full text
    International audienceThis paper deals with the study of a weakly calibrated multiview visual servoing control law for microrobotic laser phonomicrosurgery of the vocal folds. It consists of the development of an endoluminal surgery system for laserablation and resection of cancerous tissues. More specifically, this paper focuses on the part concerning the control of the laser spot displacement during surgical interventions. To perform this, a visual control law based on trifocal geometry is designed using two cameras and a laser source (virtual camera). The method is validated on a realistic testbench and the straight point-to-point trajectories are demonstrated

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Report on first international workshop on robotic surgery in thoracic oncology

    Get PDF
    A workshop of experts from France, Germany, Italy, and the United States took place at Humanitas Research Hospital Milan, Italy, on February 10 and 11, 2016, to examine techniques for and applications of robotic surgery to thoracic oncology. The main topics of presentation and discussion were robotic surgery for lung resection; robot-assisted thymectomy; minimally invasive surgery for esophageal cancer; new developments in computer-assisted surgery and medical applications of robots; the challenge of costs; and future clinical research in robotic thoracic surgery. The following article summarizes the main contributions to the workshop. The Workshop consensus was that since video-assisted thoracoscopic surgery (VATS) is becoming the mainstream approach to resectable lung cancer in North America and Europe, robotic surgery for thoracic oncology is likely to be embraced by an increasing numbers of thoracic surgeons, since it has technical advantages over VATS, including intuitive movements, tremor filtration, more degrees of manipulative freedom, motion scaling, and high-definition stereoscopic vision. These advantages may make robotic surgery more accessible than VATS to trainees and experienced surgeons and also lead to expanded indications. However, the high costs of robotic surgery and absence of tactile feedback remain obstacles to widespread dissemination. A prospective multicentric randomized trial (NCT02804893) to compare robotic and VATS approaches to stages I and II lung cancer will start shortly
    corecore