12,645 research outputs found

    Efficient algorithms for approximate reasoning

    Get PDF
    We present algorithms for approximate reasoning computations, for some intersection and implication functions, which are as efficient as E.H. Mamdani et al.'s (1975) interpolation method. Implementations of the algorithms are given in the functional language Mirand

    Approximate Reasoning with Fuzzy Booleans

    Get PDF
    This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp antecedents; in case of fuzzy booleans this set contains only two rules. It is shown that Zadeh's extension principle is equivalent to the compositional rule of inference using a complete set of fuzzy rules with singleton crisp antecedents. The results are applied to describe the use of approximate reasoning with fuzzy booleans to object-oriented design methods

    Approximate reasoning using terminological models

    Get PDF
    Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved

    Approximate reasoning for real-time probabilistic processes

    Full text link
    We develop a pseudo-metric analogue of bisimulation for generalized semi-Markov processes. The kernel of this pseudo-metric corresponds to bisimulation; thus we have extended bisimulation for continuous-time probabilistic processes to a much broader class of distributions than exponential distributions. This pseudo-metric gives a useful handle on approximate reasoning in the presence of numerical information -- such as probabilities and time -- in the model. We give a fixed point characterization of the pseudo-metric. This makes available coinductive reasoning principles for reasoning about distances. We demonstrate that our approach is insensitive to potentially ad hoc articulations of distance by showing that it is intrinsic to an underlying uniformity. We provide a logical characterization of this uniformity using a real-valued modal logic. We show that several quantitative properties of interest are continuous with respect to the pseudo-metric. Thus, if two processes are metrically close, then observable quantitative properties of interest are indeed close.Comment: Preliminary version appeared in QEST 0

    Multiconditional Approximate Reasoning with Continuous Piecewise Linear Membership Functions

    Get PDF
    It is shown that, for some intersection and implication functions, an exact and efficient algorithm exists for the computation of inference results in multiconditional approximate reasoning on domains which are finite intervals of the real numbers, when membership functions are restricted to functions which are continuous and piecewise linear. An implementation of the algorithm is given in the functional programming language Miranda

    The compositional rule of inference with several relations

    Get PDF
    The compositional rule of inference with several relations, which is the mainly used inference rule in approximate reasoning, is considered in this paper. Stability results are given and exact computational formulae are provided

    A LOGIC FOR APPROXIMATE REASONING

    Full text link
    corecore