63,307 research outputs found
Radiation tests of the Silicon Drift Detectors for LOFT
During the three years long assessment phase of the LOFT mission, candidate
to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated
and measured the radiation damage of the silicon drift detectors (SDDs) of the
satellite instrumentation. In particular, we irradiated the detectors with
protons (of 0.8 and 11 MeV energy) to study the increment of leakage current
and the variation of the charge collection efficiency produced by the
displacement damage, and we "bombarded" the detectors with hypervelocity dust
grains to measure the effect of the debris impacts. In this paper we describe
the measurements and discuss the results in the context of the LOFT mission.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Asymmetric diffusion at the interfaces in multilayers
Nanoscale diffusion at the interfaces in multilayers plays a vital role in
controlling their physical properties for a variety of applications. In the
present work depth-dependent interdiffusion in a Si/Fe/Si trilayer has been
studied with sub-nanometer depth resolution, using x ray standing waves. High
depth-selectivity of the present technique allows one to measure diffusion at
the two interfaces of Fe namely, Fe-on-Si and Si-on-Fe, independently, yielding
an intriguing result that Fe diffusivity at the two interfaces is not
symmetric. It is faster at the Fe-on-Si interface. While the values of
activation energy at the two interfaces are comparable, the main difference is
found in the pre-exponent factor suggesting different mechanisms of diffusion
at the two interfaces. This apparently counter-intuitive result has been
understood in terms of an asymmetric structure of the interfaces as revealed by
depth selective conversion electron Mossbauer spectroscopy. A difference in the
surface free energies of Fe and Si can lead to such differences in the
structure of the two interfaces.Comment: 4 pages, 5 figure
Spin properties of dense near-surface ensembles of nitrogen-vacancy centres in diamond
We present a study of the spin properties of dense layers of near-surface
nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation.
The optically detected magnetic resonance contrast and linewidth, spin
coherence time, and spin relaxation time, are measured as a function of
implantation energy, dose, annealing temperature and surface treatment. To
track the presence of damage and surface-related spin defects, we perform in
situ electron spin resonance spectroscopy through both double electron-electron
resonance and cross-relaxation spectroscopy on the NV centres. We find that,
for the energy (~keV) and dose (~ions/cm)
ranges considered, the NV spin properties are mainly governed by the dose via
residual implantation-induced paramagnetic defects, but that the resulting
magnetic sensitivity is essentially independent of both dose and energy. We
then show that the magnetic sensitivity is significantly improved by
high-temperature annealing at C. Moreover, the spin properties
are not significantly affected by oxygen annealing, apart from the spin
relaxation time, which is dramatically decreased. Finally, the average NV depth
is determined by nuclear magnetic resonance measurements, giving
-17~nm at 4-6 keV implantation energy. This study sheds light on the
optimal conditions to create dense layers of near-surface NV centres for
high-sensitivity sensing and imaging applications.Comment: 12 pages, 7 figure
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers
Magnetic properties of thin (Ga,Mn)As layers improve during annealing by
out-diffusion of interstitial Mn ions to a free surface. Out-diffused Mn atoms
participate in the growth of a Mn-rich surface layer and a saturation of this
layer causes an inhibition of the out-diffusion. We combine high-resolution
x-ray diffraction with x-ray absorption spectroscopy and a numerical solution
of the diffusion problem for the study of the out-diffusion of Mn interstitials
during a sequence of annealing steps. Our data demonstrate that the
out-diffusion of the interstitials is substantially affected by the internal
electric field caused by an inhomogeneous distribution of charges in the
(Ga,Mn)As layer.Comment: 11 pages, 5 figure
Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering
Parallel tempering and population annealing are both effective methods for
simulating equilibrium systems with rough free energy landscapes. Parallel
tempering, also known as replica exchange Monte Carlo, is a Markov chain Monte
Carlo method while population annealing is a sequential Monte Carlo method.
Both methods overcome the exponential slowing associated with high free energy
barriers. The convergence properties and efficiency of the two methods are
compared. For large systems, population annealing initially converges to
equilibrium more rapidly than parallel tempering for the same amount of
computational work. However, parallel tempering converges exponentially and
population annealing inversely in the computational work so that ultimately
parallel tempering approaches equilibrium more rapidly than population
annealing.Comment: 10 pages, 3 figure
Spin Coherence and N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR
Pulsed ESR experiments are reported for ensembles of negatively-charged
nitrogen-vacancy centers (NV) in diamonds at X-band magnetic fields
(280-400 mT) and low temperatures (2-70 K). The NV centers in synthetic
type IIb diamonds (nitrogen impurity concentration ~ppm) are prepared with
bulk concentrations of cm to cm
by high-energy electron irradiation and subsequent annealing. We find that a
proper post-radiation anneal (1000C for 60 mins) is critically
important to repair the radiation damage and to recover long electron spin
coherence times for NVs. After the annealing, spin coherence times of T~ms at 5~K are achieved, being only limited by C nuclear spectral
diffusion in natural abundance diamonds. At X-band magnetic fields, strong
electron spin echo envelope modulation (ESEEM) is observed originating from the
central N nucleus. The ESEEM spectral analysis allows for accurate
determination of the N nuclear hypefine and quadrupole tensors. In
addition, the ESEEM effects from two proximal C sites (second-nearest
neighbor and fourth-nearest neighbor) are resolved and the respective C
hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure
- …