14,221 research outputs found

    On the role of the oxidation in the methylation of guanidoacetic acid

    Get PDF
    There are two, at least, methyl transfer reactions promoted by liver slices in vitro (2). The fundamental distinction between them is that one is dependent on oxygen and the other is not

    Incorporation in vitro of labeled amino acids into bone marrow cell proteins

    Get PDF
    Nearly all experiments on the incorporation of labeled amino acids into tissue proteins in vitro have been done on tissues whose cell structure has been partially or completely disintegrated, e.g. tissue slices, segments, or homogenates. Since cell destruction reduces or abolishes the uptake of labeled amino acids (1), it seemed worth while to carry out studies on intact cells in vitro. Bone marrow cells were found to be suitable for this purpose. The labeled amino acids used were glycine-1-C14, L-leucine-1-C14, L-lysine-1-C14, and L-lysine-6-C14

    Effects of Low pH on Lactate Dehydrogenase Kinetics of Diving and Nondiving Reptiles

    Get PDF
    The properties of lactate dehydrogenase were examined in two snake species, Nerodia rhombifera and Elaphe obsoleta, and a turtle species, Pseudemys scripta. Our purpose was to compare the LDH activity of reptiles with limited anaerobic capabilities with that of the well established diver Pseudemys. The Michaelis-Menten kinetics of LDH and its susceptibility to inhibition by elevated pyruvate concentrations were investigated in the brain and heart of the three species. All tissue incubations and enzyme activity determinations were done at a pH of 7.0 in order to stimulate a diving blood pH in the three species. In both tissues the LDH activity of the snakes was higher than that of Pseudemys at pyruvate concentrations ranging between .03 mM and .50 mM. The Km values of the snakes were lower than those of Pseudemys, suggesting a greater enzyme-substrate affinity in the snake tissues. The Vmax values were higher in the snake tissues indicating a faster conversion of substrate to product. Heart LDH activity was reduced to an equal extent by high pyruvate concentrations in each of the three species. Elaphe brain LDH was most susceptible to pyruvate inhibition, but Nerodia and Pseudemys brain LDH were inhibited to an equal extent. The results indicate that the kinetic behavior of brain and heart LDH of the three species is similar at a pH of 7.4 and a pH of 7.0. The results also suggest that the LDH of Pseudemys is no better adapted to withstand anaerobic conditions than that of Nerodia or Elaphe at a pH of 7.0

    Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine

    Get PDF
    Although grape berries have been classified as non climacteric fruits, ongoing studies on grape ethylene signalling lead to challenge the role of ethylene in their ripening. One of the significant molecular changes in berries is the up regulation of ADH (alcohol dehydrogenase, EC. 1.1.1.1) enzyme activity at the inception of fruit ripening and of VvADH2 transcript levels. This paper shows that the ethylene signal transduction pathway could be involved in the control of VvADH2 expression in grapevine berries and in cell suspensions. The induction of VvADH2 transcription, either in berries at the inception of ripening or in cell suspensions, was found to be partly inhibited by 1 methylcyclopropene (1 MCP), an inhibitor of ethylene receptors. Treatment of cell suspensions with 2 chloroethylphosphonic acid (2-CEPA), an ethylene releasing compound, also resulted in a significant increase of ADH activity and VvADH2 transcription under anaerobiosis, showing that concomitant ethylene and anaerobic treatments in cell suspensions could result in changes of VvADH2 expression. All these results, associated with the presence in the VvADH2 promoter of regulatory elements for ethylene and anaerobic response, suggest that ethylene transduction pathway and anaerobic stress could be in part involved in the regulation of VvADH2 expression in ripening berries and cell suspensions. These data open new aspects of the expression control of a ripening-related gene in a non climacteric fruit

    The pneumococcal response to oxidative stress includes a role for Rgg

    Get PDF
    Streptococcus pneumoniae resides in the oxygen-rich environment of the upper respiratory tract, and therefore the ability to survive in the presence of oxygen is an important aspect of its in vivo survival. To investigate how S. pneumoniae adapts to oxygen, we determined the global gene expression profile of the micro-organism in aerobiosis and anaerobiosis. It was found that exposure to aerobiosis elevated the expression of 54 genes, while the expression of 15 genes was downregulated. Notably there were significant changes in putative genome plasticity and hypothetical genes. In addition, increased expression of rgg, a putative transcriptional regulator, was detected. To test the role of Rgg in the pneumococcal oxidative stress response, an isogenic mutant was constructed. It was found that the mutant was sensitive to oxygen and paraquat, but not to H2O2. In addition, the absence of Rgg strongly reduced the biofilm-forming ability of an unencapsulated pneumococcus. Virulence studies showed that the median survival time of mice infected intranasally with the rgg mutant was significantly longer than that of the wild-type-infected group, and the animals infected with the mutant developed septicaemia later than those infected intranasally with the wild-type

    Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae.

    No full text
    The pneumococcus obtains its energy from the metabolism of host glycosides. Therefore, efficient degradation of host glycoproteins is integral to pneumococcal virulence. In search of novel pneumococcal glycosidases, we characterized the Streptococcus pneumoniae strain D39 protein encoded by SPD_0065 and found that this gene encodes a beta-galactosidase. The SPD_0065 recombinant protein released galactose from desialylated fetuin, which was used here as a model of glycoproteins found in vivo. A pneumococcal mutant with a mutation in SPD_0065 showed diminished beta-galactosidase activity, exhibited an extended lag period in mucin-containing defined medium, and cleaved significantly less galactose than the parental strain during growth on mucin. As pneumococcal beta-galactosidase activity had been previously attributed solely to SPD_0562 (bgaA), we evaluated the contribution of SPD_0065 and SPD_0562 to total beta-galactosidase activity. Mutation of either gene significantly reduced enzymatic activity, but beta-galactosidase activity in the double mutant, although significantly less than that in either of the single mutants, was not completely abolished. The expression of SPD_0065 in S. pneumoniae grown in mucin-containing medium or tissues harvested from infected animals was significantly upregulated compared to that in pneumococci from glucose-containing medium. The SPD_0065 mutant strain was found to be attenuated in virulence in a manner specific to the host tissue
    • …
    corecore