11,658 research outputs found

    Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria

    Get PDF
    A novel halophilic actinomycete, strain H32T,was isolated froma Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32°C, pH 6.0–7.0 and in the presence of 15–25 %(w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinoneswere found to beMK-10(H4) andMK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNAgene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T)

    Selection of antagonistic actinomycete isolates as biocontrol agents against root-rot fungi

    Get PDF
    In this study, actinomycetes isolates, isolated from rhizosphere of wheat (Triticum aestivum L.), were screened for antagonistic activities on certain root rot fungi (Fusarium culmorum, Fusarium graminearum, Fusarium verticilloides and Bipolaris sorokiniana). The  in vitro antagonistic effects of actinomycetes isolates were determined on solid media against fungal pathogens. The inhibition mechanism, effect of application time and pH on inhibition was investigated. The actinomycete isolate 129.01 exhibited a high inhibition ratio of more than 60 % against all fungi. The activity of the isolate 129.01 against root rot fungi was tested under greenhouse conditions. The root rot score (1-10), mean plant height (cm) and mean weight of green part of plant (g) were determined after an incubation period. The root rot score of the infected plants was decreased significantly by this isolate, even if the plants were inoculated with all of the pathogen fungi together (P<0.05). The results indicate that isolate 129.01 could be useful as a biocontrol agent. The assignment of the isolate 129.01 to the genus Streptomyces was supported by 16S rRNA analysis.Fil: Erginbas, Gul. Centro Internacional de Mejoramiento de Maíz y Trigo; TurquíaFil: Yamac, Mustafa. Eskisehir Osmangazi University; TurquíaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Transformation of the Methylotrophic Actinomycete Amycolatopis methanolica with Plasmid DNA: Stimulatory Effect of a pMEA300-Encoded Gene

    Get PDF
    Amycolatopsis methanolica contains a 13.29-kb plasmid (pMEA300) present both in the free state and integrated at a unique genomic location. A pMEA300-free derivative (strain WV1) was selected, allowing further analysis of pMEA300-encoded functions. Whole cells of strain WV1 could be transformed at high frequencies (approximately 10^6 transformants per microgram of plasmid DNA) with both circular and linear plasmid DNA, provided that the pMEA300-encoded stf (stimulation of transformation frequency) gene was present. stf would encode a putative protein of 373 amino acids with Mr 40,201, resembling putative regulatory proteins involved in sporulation of Streptomyces griseus and Streptomyces coelicolor.

    Actinomicetos termoalcalófilos del área subtropical de Jujuy, Argentina

    Get PDF
    El objetivo de este trabajo fue examinar los actinomicetos termoalcalófilos presentes en el área subtropical de Jujuy, Argentina, caracterizada por el cultivo de la caña de azúcar. Se aislaron en medio con novobiocina las especies Laceyella putida, Laceyella sacchari, Thermoactinomyces intermedius, Thermoactinomyces vulgaris y Thermoflavimicrobium dichotomicum a partir de la rizósfera de plantas y de renuevos de caña de azúcar, así como de suelos de pastura y de monte natural. El pH de los suelos era casi neutro a ligeramente alcalino, excepto en un solo caso en que el suelo estaba acidificado por licor láctico. El número de actinomicetos encontrados sobre los tejidos vivos y en el bagazo recién obtenido o almacenado según el método de Ritter fue pequeño en comparación con el observado sobre las hojas en descomposición. L. sacchari predominó respecto de T. vulgaris. Se aislaron especies termoalcalófilas de Laceyella, Thermoactinomyces, Thermoflavimicrobium, Saccharomonospora, Streptomyces y Thermononospora de los residuos compostados de caña de azúcar utilizando medio sin novobiocina. El aire capturado cerca de pilas de bagazo en compostaje contenía esporos de estos organismos.The objective of this study was to examine the alkalithermophilic actinomycete communities in the subtropical environment of Jujuy, Argentina, characterized by sugarcane crops. Laceyella putida, Laceyella sacchari, Thermoactinomyces intermedius, Thermoactinomyces vulgaris and Thermoflavimicrobium dichotomicum were isolated on the media with novobiocin, from sugar cane plants and renewal rhizospheres, and grass and wood soils. Soil pH was almost neutral or lightly alkaline, except for grass soil acidified by lactic liquor. A smaller number of actinomycetes was found on the living plants and bagasse (recently obtained or stored according to the Ritter method) with respect to decomposed leaves on the soil. Thermophilic species of Laceyella, Thermoactinomyces, Thermoflavimicrobium, Saccharomonospora, Streptomyces and Thermononospora were isolated on the media without novobiocin, from composted sugar cane residues. Air captured near composted bagasse piles, contained alkalithermophilic actinomycete spores.Fil: Carrillo, L.. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Benitez Ahrendts, Marcelo Rafael. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; ArgentinaFil: Maldonado, Marcos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Jujuy. Facultad de Ciencias Agrarias; Argentin

    Halophilic Actinomycetes in 1 Saharan Soils of Algeria: Isolation, Taxonomy and Antagonistic Properties

    Get PDF
    The diversity of a population of 52 halophilic actinomycetes was evaluated by a polyphasic approach, which showed the presence of Actinopolyspora, Nocardiopsis, Saccharomonospora, Streptomonospora and Saccharopolyspora genera. One strain was considered to be a new member of the last genus and several other strains seem to be new species. Furthermore, 50% of strains were active against a broad range of indicators and contained genes encoding polyketide synthetases and nonribosomal peptide synthetases

    Actinomycetes and actinophage in fresh water

    Get PDF
    Actinomycetes are a group of micro-organisms which lie, in classification, half-way between the fungi and the bacteria. They may be isolated from the plating of leaf washings, water samples and mud dilutions on to nutrient agar (with incorporated actidione to eliminate fungi). The predominant genus varied with the source of the sample. An attempt was also made to isolate the phages of some Actinomycetes. A search was made in the typical environments of the host, for the virus. In this way actinophage were also isolated; and shown to be capable of being transmitted from one host strain to another host strain within 1 sp or from one host to another within 1 genus; i.e. polyvalent

    Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil

    Get PDF
    A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)

    Nonomuraea monospora sp. nov., an actinomycete isolated from cave soil in Thailand, and emended description of the genus Nonomuraea

    Get PDF
    A novel actinomycete, designated strain PT708T, was isolated from cave soil collected in Pha Tup Cave Forest Park, Nan province, Thailand. It produced compounds with antimicrobial and anticancer activities. Its chemotaxonomic properties were consistent with those of members of the genus Nonomuraea . The major menaquinone was MK-9(H4), with minor amounts of MK-9(H6), MK-9(H2), MK-10(H2) and MK-8(H4). The polar lipid profile contained phosphatidylmonomethylethanolamine, diphosphatidylglycerol, hydroxy-phosphatidylmonomethylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannoside and phosphatidylinositol. The major fatty acids were iso-C16 : 0, 10-methyl C17 : 0, C16 : 0 and C17 : 1ω6c. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PT708T belonged to the genus Nonomuraea and was most closely related to Nonomuraea rhizophila YIM 67092T (98.50 % sequence similarity) and Nonomuraea rosea GW 12687T (98.30 %). The genomic DNA G+C content of strain PT708T was 73.3 mol%. Unlike the recognized members of the genus Nonomuraea , the novel strain formed single spores at the tips of aerial hyphae. Based on the phenotypic, phylogenetic and genotypic evidence, strain PT708T represents a novel species of the genus Nonomuraea , for which the name Nonomuraea monospora sp. nov. is proposed. The type strain is PT708T ( = TISTR 1910T = JCM 16114T)

    Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow

    Get PDF
    The taxonomic status of an actinomycete isolated from soil collected from a hay meadow was determined using a polyphasic approach. The strain, designated N1350T, had morphological and chemotaxonomic properties consistent with its classification in the genus Williamsia and formed a distinct phyletic line within the clade comprising the type strains of species of the genus Williamsia in the 16S rRNA gene tree. Strain N1350T shared highest 16S rRNA gene sequence similarities with Williamsia marianensis MT8T (98.1 %) and Williamsia muralis MA140-96T (98.3 %). However, strain N1350T was readily distinguished from the type strains of Williamsia species using a combination of phenotypic properties. On the basis of these data, strain N1350T is considered to represent a novel species of the genus Williamsia. The name proposed for this taxon is Williamsia faeni sp. nov., with the type strain N1350T (=DSM 45372T =NCIMB 14575T =NRRL B-24794T)

    Taxonomic study and partial characterization of antimicrobial compounds from a moderately halophilic strain of the genus Actinoalloteichus

    Get PDF
    A moderately halophilic actinomycete strain designated AH97 was isolated from a saline Saharan soil, and selected for its antimicrobial activities against bacteria and fungi. The AH97 strain was identified by morphological, chemotaxonomic and phylogenetic analyses to the genus Actinoalloteichus. Analysis of the 16S rDNA sequence of strain AH97 showed a similarity level ranging between 95.8% and 98.4% within Actinoalloteichus species, with A. hymeniacidonis the most closely related. The comparison of the physiological characteristics of AH97 with those of known species of Actinoalloteichus showed significant differences. Strain AH97 showed an antibacterial and antifungal activity against broad spectrum of microorganisms known to be human and plant pathogens. The bioactive compounds were extracted from the filtrate culture with n-butanol and purified using thin layer chromatography and high pressure liquid chromatography procedures. Two active products were isolated, one hydrophilic fraction (F1) and another hydrophobic (F2). Ultraviolet-visible, infrared, mass and 1H and 13C nuclear magnetic resonance spectroscopy studies suggested that these molecules were the dioctyl phthalate (F2) and an aminoglycosidic compound (F1)
    corecore