5 research outputs found

    Contents

    Get PDF
    A trace monitor observes the sequence of actions in a software system, and when it detects that this sequence matches a given pattern, it executes some extra code of its own. Trace monitors are often specified declaratively using patterns based on regular expressions, context free grammars or logical formulae, and then the trace monitor implementation is generated from the specification. Trace monitors are particularly useful for runtime verification, and many variations have been proposed. Despite this intense interest, there have been hardly any systems that implement the idea in its full generality, because it is hard to generate e#cient code from a purely declarative statement of the pattern. This paper identifies and addresses the challenges faced in generating e#cient trace monitors from declarative pattern-based specifications

    Aspect structure of compilers

    Get PDF
    Compilers are among the most widely-studied pieces of software; and, modularizing these valuable artifacts is a recurring theme in research. However, modularization of cross-cutting concerns in compilers is not yet well explored. Even today, implementation of one compiler concern scatters across and tangles with the implementation of several other concerns, thereby leading to a mismatch between different compiler modules and the operations they represent. Essentially, current compiler implementations fail to explicitly identify the control dependencies of different phases, and separately characterize the actions to execute during those phases. As a result, information about their program-execution path remains non-intuitive: it stays hidden within the program structure and cuts-across several phase implementations. Consequently, this makes compiler designs and artifacts difficult to comprehend, maintain and reuse. Such limitations occur primarily as a result of the inability of mainstream object-oriented languages, such as Java, to organize the cross-cutting concerns into clean modular units. This thesis demonstrates how such modularity-issues in compilers can be addressed with the help of a relatively new, yet powerful programming paradigm called aspect-oriented programming

    An Efficient and Flexible Implementation of Aspect-Oriented Languages

    Get PDF
    Compilers for modern object-oriented programming languages generate code in a platform independent intermediate language preserving the concepts of the source language; for example, classes, fields, methods, and virtual or static dispatch can be directly identified within the intermediate code. To execute this intermediate code, state-of-the-art implementations of virtual machines perform just-in-time (JIT) compilation of the intermediate language; i.e., the virtual instructions in the intermediate code are compiled to native machine code at runtime. In this step, a declarative representation of source language concepts in the intermediate language facilitates highly efficient adaptive and speculative optimization of the running program which may not be possible otherwise. In contrast, constructs of aspect-oriented languages - which improve the separation of concerns - are commonly realized by compiling them to conventional intermediate language instructions or by driving transformations of the intermediate code, which is called weaving. This way the aspect-oriented constructs' semantics is not preserved in a declarative manner at the intermediate language level. This representational gap between aspect-oriented concepts in the source code and in the intermediate code hinders high performance optimizations and weakens features of software engineering processes like debugging support or the continuity property of incremental compilation: modifying an aspect in the source code potentially requires re-weaving multiple other modules. To leverage language implementation techniques for aspect-oriented languages, this thesis proposes the Aspect-Language Implementation Architecture (ALIA) which prescribes - amongst others - the existence of an intermediate representation preserving the aspect-oriented constructs of the source program. A central component of this architecture is an extensible and flexible meta-model of aspect-oriented concepts which acts as an interface between front-ends (usually a compiler) and back-ends (usually a virtual machine) of aspect-oriented language implementations. The architecture and the meta-model are embodied for Java-based aspect-oriented languages in the Framework for Implementing Aspect Languages (FIAL) respectively the Language-Independent Aspect Meta-Model (LIAM) which is part of the framework. FIAL generically implements the work flows required from an execution environment when executing aspects provided in terms of LIAM. In addition to the first-class intermediate representation of aspect-oriented concepts, ALIA - and the FIAL framework as its incarnation - treat the points of interaction between aspects and other modules - so-called join points - as being late-bound to an implementation. In analogy to the object-oriented terminology for late-bound methods, the join points are called virtual in ALIA. Together, the first-class representation of aspect-oriented concepts in the intermediate representation as well as treating join points as being virtual facilitate the implementation of new and effective optimizations for aspect-oriented programs. Three different instantiations of the FIAL framework are presented in this thesis, showcasing the feasibility of integrating language back-ends with different characteristics with the framework. One integration supports static aspect deployment and produces results similar to conventional aspect weavers; the woven code is executable on any standard Java virtual machine. Two instantiations are fully dynamic, where one is realized as a portable plug-in for standard Java virtual machines and the other one, called Steamloom^ALIA , is realized as a deep integration into a specific virtual machine, the Jikes Research Virtual Machine Alpern2005. While the latter instantiation is not portable, it exhibits an outstanding performance. Virtual join point dispatch is a generalization of virtual method dispatch. Thus, well established and elaborate optimization techniques from the field of virtual method dispatch are re-used with slight adaptations in Steamloom^ALIA . These optimizations for aspect-oriented concepts go beyond the generation of optimal bytecode. Especially strikingly, the power of such optimizations is shown in this thesis by the examples of the cflow dynamic property, which may be necessary to evaluate during virtual join point dispatch, and dynamic aspect deployment - i.e., the selective modification of specific join points' dispatch. In order to evaluate the optimization techniques developed in this thesis, a means for benchmarking has been developed in terms of macro-benchmarks; i.e., real-world applications are executed. These benchmarks show that for both concepts the implementation presented here is at least circa twice as fast as state-of-the-art implementations performing static optimizations of the generated bytecode; in many cases this thesis's optimizations even reach a speed-up of two orders of magnitude for the cflow implementation and even four orders of magnitude for the dynamic deployment. The intermediate representation in terms of LIAM models is general enough to express the constructs of multiple aspect-oriented languages. Therefore, optimizations of features common to different languages are available to applications written in all of them. To proof that the abstractions provided by LIAM are sufficient to act as intermediate language for multiple aspect-oriented source languages, an automated translation from source code to LIAM models has been realized for three very different and popular aspect-oriented languages: AspectJ, JAsCo and Compose*. In addition, the feasibility of translating from CaesarJ to LIAM models is shown by discussion. The use of an extensible meta-model as intermediate representation furthermore simplifies the definition of new aspect-oriented language concepts as is shown in terms of a tutorial-style example of designing a domain specific extension to the Java language in this thesis

    Middle-out domain-specific aspect languages and their application in agent-based modelling runtime inspection

    Get PDF
    Domain-Specific Aspect Languages (DSALs) are a valuable tool for separating cross-cutting concerns, particularly within fields with endemic cross-cutting practices. Agent-Based Modelling (ABM) runtime inspection, which cuts across the core concern of model development, serves as a prime example. Despite their usefulness, DSALs face multiple adoption issues: the literature regarding their development and use is incohesive, coupling to a weave target hinders re-use, and available tooling is immature compared to Domain-Specific Languages (DSLs). We believe these issues can be aided by furthering DSL middle-out techniques for DSALs.We first define the background of what a DSAL is and how they may be used, moving onto how we can use DSL techniques to further DSALs. We develop a middle-out semantic model approach for developing domain-level DSALs with transparent aspect orientation using adaptions of DSL techniques. We have implemented the approach for model-specific DSALs for the in-house framework Animaux, and as middleware-specific DSAL for agent messages in the JADE framework, which can be specialised to models using extension DSALs. We give illustrative result cases using our implementations to provide a base of the user development costs and performance of this approach.In conclusion, we believe the adoption of these technologies aids ABM applications and encourage future work in similar fields. This thesis has given a base philosophy toward DSLs, a novel approach for the development of middle-out DSALs and illustrative cases of this approach

    Co-Evolution of Source Code and the Build System: Impact on the Introduction of AOSD in Legacy Systems

    Get PDF
    Software is omnipresent in our daily lives. As users demand ever more advanced features, software systems have to keep on evolving. In practice, this means that software developers need to adapt the description of a software application. Such a description not only consists of source code written down in a programming language, as a lot of knowledge is hidden in lesser known software development artifacts, like the build system. As its name suggests, the build system is responsible for building an executable program, ready for use, from the source code. There are various indications that the evolution of source code is strongly related to that of the build system. When the source code changes, the build system has to co-evolve to safeguard the ability to build an executable program. A rigid build system on the other hand limits software developers. This phenomenon especially surfaces when drastic changes in the source code are coupled with an inflexible build system, as is the case for the introduction of AOSD technology in legacy systems. AOSD is a young software development approach which enables developers to structure and compose source code in a better way. Legacy systems are old software systems which are still mission-critical, but of which the source code and the build system are no longer fully understood, and which typically make use of old(-fashioned) technology. This PhD dissertation focuses on finding an explanation for this co-evolution of source code and the build system, and on finding developer support to grasp and manage this phenomenon. We postulate four "roots of co-evolution" which represent four different ways in which source code and the build system interact with each other. Based on these roots, we have developed tool and aspect language support to understand and manage co-evolution. The roots and the tool support have been validated in case studies, both in the context of co-evolution in general and of the introduction of AOSD technology in legacy systems. The dissertation experimentally shows that co-evolution indeed is a real problem, but that specific software development and aspect language support enables developers to deal with it
    corecore