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Abstract

Compilers are among the most widely-studied pieces of software; and, modularizing these valuable

artifacts is a recurring theme in research. However, modularization of cross-cutting concerns in

compilers is not yet well explored. Even today, implementation of one compiler concern scatters

across and tangles with the implementation of several other concerns, thereby leading to a mis-

match between different compiler modules and the operations they represent. Essentially, current

compiler implementations fail to explicitly identify the control dependencies of different phases, and

separately characterize the actions to execute during those phases. As a result, information about

their program-execution path remains non-intuitive: it stays hidden within the program structure

and cuts-across several phase implementations. Consequently, this makes compiler designs and

artifacts difficult to comprehend, maintain and reuse. Such limitations occur primarily as a result

of the inability of mainstream object-oriented languages, such as Java, to organize the cross-cutting

concerns into clean modular units.

This thesis demonstrates how such modularity-issues in compilers can be addressed with the

help of a relatively new, yet powerful programming paradigm called aspect-oriented programming.
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Chapter 1

Introduction

Construction of large and complex software is a difficult and intricate task. As

software evolves, it becomes difficult to maintain its reusable and comprehensible na-

ture as a result of interdependent functions, interconnected design architecture, and

large size. This leads to a crucial question of how to divide software into manageable

pieces with simple mutual relationships. The resulting system should be relatively

easy to update by replacing corresponding pieces with new ones. In 1974, Dijkstra[21]

proposed decomposing a large programs into distinct units called modules in order

to manage software complexity.

A module represents a set of related concerns. Examples of concerns include de-

sign rules, business logic, interaction patterns, services, and infrastructures. The act

of factoring out large software into modules, called modularization1, helps manage

software complexity in several ways. First, by providing separate modules for dis-

tinct concerns that overlap in functionality to a minimal extent, it promotes clean

separation of concerns. Separation of concerns enables us to break the complexity of

a problem into loosely-coupled, easier to solve, subproblems. Further, this separa-

tion permits distinct and specialized groups of people to reason about and develop

disparate pieces of software in isolation. Second, software features implemented in

different modules can then be assembled to build a larger system. Third, by decou-

pling fast-changing design decisions and interaction rules, modules facilitate flexible

maintenance of different parts of a software. Fourth, developing modules as plug-

gable features allows them to be tested independently and to be added or removed

from the system. Consequently, it offers flexibility to upgrade or replace only certain

1We adopt Kiczales and Mezini [41, p.49]’s definition of modularization, “the implementation of the concern is:
(i) localized, (ii) has a well-defined interface, and (iii) is amenable to separate development. It is also critical that
such modularization be efficient. We avoid using general terms like modular or modularized to mean modular with
respect to any particular programming technology, such as current type checking technology.”
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parts of the system, without having to consider the entire software. Thus, proper

modularization of a large program allows different teams to design, build, assemble,

analyze, deploy, and maintain different parts of a system in an independent manner.

Current programming languages such as Modula-2, Java, and C# offer a variety

of modularity units including functions, classes, modules, and packages. However,

there are other program features that do not correspond to these typical structures.

These features are scattered across various program units and are tangled with the

design and implementation of the entire system. Existing programming paradigms,

such as Object Orientation (OO) and Component-based Software Engineering, fail

to localize and group these cross-cutting software concerns.

The inability of mainstream languages to modularize cross-cutting concerns im-

pairs software development and maintenance tasks in several ways. Tangled imple-

mentation of different software features makes it difficult to reason about, build, and

test without requiring detailed knowledge of other parts of the system. Further,

dependence of implementation of one feature upon others, called coupling, inhibits

the ability to further reuse or modify an implementation.

In response, over the last few years, a new programming technique, Aspect Ori-

ented Programming (AOP)[17, 42, 43, 54], has developed. It has helped improve

the ability of programmers to separate the expression of different concerns[34, 69].

In particular, it provides increased support for managing cross-cutting concerns in

software. It enhances modular and expressive capabilities of existing languages by of-

fering additional units of abstraction and encapsulation. By abstraction, we mean the

ability to hide the implementation details and provide a higher level view of the un-

derlying logic and interaction patterns. Encapsulation here refers to the grouping of

related behavior and associated contexts/attributes into a single entity. Essentially,

AOP provides principled ways of defining and localizing the cross-cutting concerns

into dedicated modules. By doing so, it promotes both separation of concerns and

reusability of existing artifacts. Further, by enforcing logical boundaries between

such concerns, it promotes maintainability of software components[5, 57].

One substantial and important category of software product, language systems,

such as analyzers, compilers, translators, and interpreters do not avail themselves of
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these new modularity constructs. Structural decomposition of such a system into

different phases has become standard, and the components can be usually developed

using well-known systematic techniques. The focus of this thesis, however, is another

level of modularity: using this new AOP technology to extract, into local modules,

the cross-cutting concerns that are scattered across different phase implementations.

1.1 Motivation

A compiler is a large, complex, and significant software system that must adhere to

highest standards of quality. Because of this position, modularity assumes prime im-

portance in compiler design and implementation. Demand for modular compilers has

driven the development of software engineering and software modularity. Tradition-

ally, the division of compilers into stages of lexical, syntactic, and semantic analyses

followed by a generation phase has been a widely-used approach whose benefits are

well known. However, modern techniques for improving modularity, such as aspects,

have been largely unexplored in the domain of compilers. Further, no production

compiler incorporating aspects has been built to-date. Therefore, execution paths

related to different phases of a compiler, referred to as control-flows, still remain hid-

den deep within the compiler structure, making it difficult not only to understand

but also to maintain and extend them.

Our task is to identify and modularize cross-cutting concerns inherent in compil-

ers. This includes explicitly declaring the context and loci of control-flow of these

concerns for improved comprehension. Further, we will characterize the actions,

which will maintain or improve the comprehension and performance of such concerns.

We carry out these endeavors in the context of an industrial strength compiler, the

AspectJ compiler, ajc[36, 38, 54].

1.2 Thesis

We claim that the logical structure of compilers does not align well with their current

implementation because cross-cutting concerns are currently scattered and tangled

with their phase structure; and, aspect-oriented modularization of such concerns im-

3



proves their comprehensibility, provides better opportunities for reuse, and increases

potential for flexible evolution.

1.3 Contributions

This research restructures an existing compiler for improved modularity by incor-

porating aspects. The goal is to write clearer and more concise code without any

significant performance penalty. The improvements in expressiveness and structure

will allow us to understand, reuse, and incrementally improve the compiler’s com-

ponents without incurring the expense of a complete rewrite. Further, this research

makes its control-flow structure more explicit, for better comprehensibility.

The specific contributions are:

1. Identification of a number of points in the static program structure and dynamic

execution graph of ajc corresponding to a variety of cross-cutting concerns; and,

modular code changes that improve the control-flow structure and make it more

explicit.

2. Example modularization of two different cross-cutting concerns:

(a) peephole optimizer, and

(b) error handler; and,

identification of the difficulties for modularization of two other concerns:

(a) separation of the Byte Code Engineering Library from the weaver, and

(b) lazy evaluation of state dependencies.

3. Quantitative and qualitative assessment of the modified compiler in terms of

(a) modularity,

(b) reusability,

(c) performance,

(d) correctness, and

(e) coupling and cohesion.
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1.4 Outline

This thesis is organized as follows:

• First, we introduce background material related to the thesis in chapter 2. This

includes placing this research in the larger context of programming languages,

an overview of AOP, including relevant AspectJ constructs, and a description

of existing alternate modularization techniques.

• We move on to describe a number of potential aspect candidates in compilers.

In particular, chapter 3 discusses three standard candidates for modularization,

and four other novel ones. In the subsequent chapters, we describe in depth the

implementation and evaluation of the two most feasible candidates.

• Chapter 4 illustrates modularization of peephole optimizer in the context of ajc.

Also, it presents a study that investigates the performance, comprehensibility,

and modularity gains of this re-structuring.

• Chapter 5 is in similar vein to chapter 4. The candidate here is the error han-

dling concern. Likewise, the evaluation metrices are comprehensibility, reusabil-

ity, and modularity.

• Finally, in chapter 6, we summarize this work, and consider some avenues for

additional research.
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Chapter 2

Background

Considering compilers as the domain of interest, we begin this chapter by review-

ing some background knowledge of compilers, and then proceed to lay the ground-

work for our exploration of modularity issues in compiler design and implementation

discussed in the remainder of the thesis. In particular, we first review the basics

of compiler structure, followed by an overview of the programming paradigms and

software engineering techniques currently employed for modularization. Next, we

discuss modularity issues in compilers, and place this research in the larger context

of programming languages. Then, we provide an insight into the ways in which As-

pect Oriented Programming and its constructs assist us in addressing the modularity

issues. This is followed by an overview of our candidate compiler – the AspectJ 1.6.4

compiler – from both structural and functional perspectives. Finally, we close this

chapter with a literature review of prior efforts towards modularization of compiler

design and implementation.

2.1 Compiler Organization

Compilers are programs that translate computer programs written in one language,

the source language, into a semantically equivalent program written in another target

language. The language that the compiler, itself a program, is written in is called

the meta language. Generation of the target program from the source program in-

volves several transformations. These transformations are called phases. To reflect

the analyses performed between the phases, the input program is represented as an

abstract syntax tree (AST). The AST represents the input program’s phrase struc-

ture. Its sub-trees correspond to the phrases, such as statements, and expressions, of

the source program. Its leaf nodes correspond to identifiers, literals, and operators
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of the source program.

Good compiler design depends on a variety of factors, such as complexity of pro-

cessing of input artifacts, availability of resources, and language facilities. A com-

piler for a relatively simple language used in an educational setting might be a single

monolithic piece of software. However, modern compilers used in industrial settings

to compile large and complex source languages entail restrictive design principles.

Traditionally, the compilation process is divided into a number of phases, such as

lexical analysis, parsing, semantic analysis, code generation, and optimization. This

sequencing of compiler operations allows a language implementation to develop as

a collection of separately compilable modules with consistent interaction patterns.

This thesis focuses on such industrial-strength compilers.

Conventionally, compiler construction is viewed as a multi-stage process that gen-

erates output by following certain compilation sequence: the pre-defined order in

which the phases are executed for any given input program. An artifact obtained as

the output of one stage is passed on as an input to the succeeding stage in a pipeline,

except symbol tables which remain for all the stages. This logical view leads us to

understand and visualize compilers as shown in Figure 2.1.
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Figure 2.1: Logical structure of compiler phases.

From an implementation perspective, the front end of a compiler generates an ab-

stract syntax tree (AST) to represent the input program, and the back end manages

multiple traversals over the AST to implement various analyses, optimizations and

finally, machine code generation.

The compiler phases are not actually realized in a clean modular structure as

expected. An investigation of several popular compilers, namely: abc[4], ajc[36, 38,
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54], gcc[32] , SML-NJ[2], and DemeterJ/F[47]1 has led to three major observations:
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Figure 2.2: Cross-cutting nature of different concerns.

1. First, the phases of a compiler interact with each other in an intricate manner.

Consider the semantic analysis and intermediate code generation phases. The

semantic analyzer synthesizes and maintains type and value environments as

part of type checking and symbol-table loading. Similarly, it also computes

escape values as part of escape analysis. These values will be inherited by the

intermediate code generator for managing static links and creating interme-

diate representation trees. Such intricate relationships engender tight coupling

between type checking, escape analysis, symbol-table loading, and intermediate-

code generation.

2. Second, these phases are of cross-cutting nature. Implementation of different

concerns, such as symbol-table management, error handling, logging, and opti-

mization, is often tangled and scattered across several units of modularization,

as depicted in Figure 2.2. This scattering and tangling of code leads to poor

structural and functional modularity. Although they are global design issues,

1Personal communication with Bryan Chadwick at Northeastern University.
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which affect different methods and classes, they are handled locally within those

methods and classes.
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Figure 2.3: Implementation structure of compiler phases.

3. Third, control dependencies related to different concerns in compilers are not

explicitly defined and localized into distinct modular units. As a result, context-

sensitive execution paths related to different operations remain hidden within

the compiler structure.

Currently, many compilers are structured as a small number of monolithic phases,

which are either rigidly separated by different passes, or fused together by complex,

unexpected interactions. The rigidly-separated passes obscure the meaningful trans-

formations performed by individual passes. The complex interactions are mostly the

result of a single phase performing several heterogeneous analyses, transformations

and optimizations. Concerns, such as symbol table management, error handling, log-

ging, and optimization, are orthogonal to traditional object-oriented hierarchy. They

affect different units of modularity in the hierarchy, such as methods and classes, as
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shown in Figure 2.3. However, they are still being implemented in an hierarchical

fashion, which does not correspond to their natural decomposition. Combined, these

factors make compilers difficult to understand and maintain.

Compilers with alternative structures such as nanopass[62] have been proposed

to address the aforementioned problems. These alternatives facilitate development

and maintenance of compilers by aligning actual implementations with their logical

organizations. However, they incur additional overhead in terms of code duplication,

additional passes, extra AST traversals and extra passing of intermediate artifacts

through several passes of compilation.

To address these problems and challenges in the design and implementation of an

optimizing compiler, this thesis describes a new approach to structuring the compiler

code. Our goal is to attain modularity at both the structural and functional levels.

The essential idea is to identify the cross-cutting functions in compilers and to im-

plement them as stand-alone pluggable constructs. In order to define the activation

order of these phases, compiler writers can implement a compilation sequence man-

ager as an independent module. Further, to improve comprehension of control-flow

information related to different features, we aim to define and express control flow

overlays by leveraging the capabilities of existing language mechanisms. Control

flow overlays declare the execution path corresponding to chosen program overlays –

small segments of programs.

2.2 Intermediate Representation Trees

One common phase in the compilation sequence is creation of intermediate represen-

tation of the input code. It is an abstraction for machine language operations that is

free of any machine-specific details. Also, it is independent of the source language.

Although intermediate-code generation is not absolutely essential, it is preferred

for reasons of increased portability, improved modularity, and greater optimization

opportunities.

Intermediate code may be represented in different forms: linear sequence, expres-

sion trees, or pseudo-assembly. For the purpose of this thesis, we will consider an

example of one in tree form. Table 2.1 summarizes the operators and operands of
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the intermediate-representation (IR) tree that will appear in illustrative examples in

this thesis.

Table 2.1: Intermediate representation trees.
Operator Operands Description

E
x
p

CONST int i Integer constant i
TEMP Temp t Temporary t; equivalent of machine-language register
BINOP int o, Exp e1, Exp e2 Apply binary operator o, such as PLUS and MINUS to e1 and e2
MEM Exp e Contents of 1 word of memory starting at e
CALL Exp f, ExpList l Apply function f to argument list l
ESEQ Stm s, Exp e Evaluate statement s for side-effects, and expression e for a result
MEM Exp e Contents of 1 word of memory starting at e

S
tm

MOVE Temp t, Exp e Evaluate e and move its result to t
EXP Exp e Evaluate e and discard the result
JUMP Exp e, LabelList l Evaluate e and jump to one of the destinations from l

CJUMP
int o, Exp e1, Exp e2 Evaluate e1 and e2 in order and compare result using o
Label t, Label f If the result is true, jump to t, else to f

SEQ Stm s1, Stm s2 Statement s1 followed by s2
LABEL Label l Define name l to the current machine code address

ExpList Exp head, ExpList tail List of expressions, where head is an Exp, and tail is an ExpList
StmList Stm head, StmList tail List of statements where head is a Stm, and tail is a StmList

Note that expressions, represented as Exp, compute some values, possibly with

side effects. Statements, represented as Stm, have side effects, and perform control

flow, such as jumps and calls. We will provide additional description of intermediate

representation when required.

2.3 Current Modularization Techniques

Existing modularization techniques do not adequately address behaviors spanning

over different modules that are often unrelated. Since most systems include cross-

cutting concerns, several techniques have emerged to modularize their implementa-

tion. Researchers have studied various ways to accomplish this task under a more

general topic of “separation of concerns”[6, 7, 27, 30, 46] for elegant software de-

sign and evolution. Here, we will explore these existing alternative techniques that

have been employed to modularize the implementation of cross-cutting concerns.

Such techniques include mix-in classes, design patterns, adaptive programming, and

domain-specific solutions.
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2.3.1 Mix-in Classes

Mix-ins[6, 7, 27] are modular encapsulations for feature declarations and product

definitions that can be shared in multiple modules. They are classes that are not

used on their own; they are usually combined with other classes to extend the base

class with desired properties.

Mix-in classes resemble Java classes except that a mix-in is parametrized over its

superclass. Since a mix-in is not inextricably bound to any particular parent, a mix-

in is regarded as being parametrized by a parent, which it is extending. Semantically

mix-ins are, therefore, like functions from classes to classes, also called functors in

the functional programming community. Consequently, they can be applied to each

of multiple base classes to extend them into different derived classes with the same

mixed-in behavior. By abstracting a class expression over an imported class, mix-

ins enable the encapsulation of each extension in its own source code unit. While

classes enable reuse because each class can be extended and refined by defining new

subclasses, the reuse is one-sided; each class can be extended in many different ways,

but each extension applies only to its superclass. A mix-in is parametrized with

respect to its superclass, so it can add functionality to many different classes. Hence,

a mix-in has a greater reuse potential than a class. Mix-ins enable us to uniformly

extend a set of classes with a set of fields and methods. Thus, they improve the

flexibility of class hierarchies, thereby improving the ability to modularize code and

compose features.

2.3.2 Design Patterns

Another collection of techniques that is currently employed for modularization is de-

sign patterns. Design patterns describe superior and reusable solutions to commonly-

occurring problems in software design. Object-oriented design patterns typically

show relationships and interactions between classes or objects, without specifying

the final application classes or objects that are involved[30]. This allows us to ab-

stract the commonalities from the application, and to modularize separate behaviors

or concerns into distinct units.

This section deals with one class of design patterns that is commonly found in
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compilers: behavioral design patterns. This group of patterns help us identify com-

mon communication patterns between objects and concentrate on the assignment

of responsibilities between them. Specifically, we mention two of them, namely the

visitor pattern, and the subject-observer pattern[30] here.

Visitor Pattern

This behavioral design pattern promotes separation of concerns, and also provides a

flexible design for extending existing functionality that are determined by types and

multiple dispatch.

The visitor pattern is often used to separate the structure of an object collec-

tion from the operations performed on that collection. It defines two different class

hierarchies: one for the visitable elements and the other for the visitors, as shown

in Figure 2.4. The elements represent different data structures being operated on,

and Visitors represent different operations, algorithms, or behaviors related to these

elements. Visitor pattern allows us to create a separate visitor concrete class for each

type of operation. Every visitor has a method for every data structure element type.

The data structure elements, however, only deal with the abstract visitor, and hence

only have one method accept() that deals with it. That method is overridden in

each concrete element, which performs the specialized operation for the visitor.

This pattern is also useful for adding new operations over existing data structures.

This flexibility is the result of distinct separation of variant and invariant behavior in

the visitor pattern. The variant behaviors are encapsulated in the concrete Visitors.

The programmer adds a new subclass to the visitor class hierarchy that defines the

new operation. The invariant behaviors are represented by the data structure ele-

ments and the abstract Visitor. Thus, visitor pattern elegantly solves the problem

of adding new operations to composite class hierarchies without modifying the text

of either the composite class or its variants.

The visitor pattern, however, comes with several drawbacks:

1. The object-oriented paradigm describes a system as a collection of objects,

where the supported operations are grouped with the objects themselves. The

visitor pattern, on the other hand, forces us to create separate hierarchies for
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Figure 2.4: Object-oriented implementation of visitor pattern.

objects and for the operations on them. The visitor pattern violates the object-

oriented viewpoint of the program.

2. With the flexibility to add new operations, the visitor pattern allows us to defer

implementation of these operations. However, just as in case with mix-ins, the

control-flow of the operation – invoking visiting logic – stays with the main

class. Consequently, if a new visitable object is to be added to the operation

structure, all the implemented Visitors need to be modified. The separation of

Visitors from the objects they visit is only in one direction: Visitors depend

on visitable objects while visitable objects are not dependent on Visitors2.

3. Much code has to be written to prepare the use of Visitors: the Visitor

class with one abstract method per class, and a new accept() method in every

class visited in the hierarchy. The extra code in the element classes makes it

2Part of the dependency problems can be solved by using reflection, with an attendant performance cost.
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harder to understand and maintain the code. Furthermore, if a visitor pattern

has not been incorporated from the beginning, the entire hierarchy has to be

modified later to implement it. In the worst case, if the hierarchy cannot be

modified, perhaps because the source is not available, the visitor pattern cannot

be applied at all.

4. This pattern relies heavily on a double-dispatch mechanism to determine the

concrete class of the element visited. Double-dispatch adds extra runtime

method calls and could become problematic in performance-critical settings.

Further, implementing redirection requires all the Visitors to share the same

interface as the abstract Visitors. In other words, to support the double-

dispatch mechanism, the abstract Visitors forces the return types, arity, and

parameter types of various visiting methods of a certain class to be the same.

This requirement is difficult to meet because different operations usually have

different computational needs and contexts. Also, this constraint tends to make

programs less clear and introduces dependencies that can impede evolution.

Oliveira et al. have proposed a solution to ameliorate the problem relating to this

structural rigidity imposed by the visitor pattern. They propose using generic and

type-safe mechanisms to capture the essence of this pattern in a reusable manner.

However, the problems resulting from the use of indirection still persist.

Lets consider a concrete example of the visitor pattern. Figure 2.5 shows a hi-

erarchy of different nodes of an abstract syntax tree (AST) for an input program,

with Node interface at its top. In the snippet of code shown, VarNode represents a

variable-reference expression, AssignNode represents an assignment expression, and

ArithNode represents an arithmetic expression. The accept() methods receive in-

vocations from appropriate visitors with instances of appropriate types, upon which

they can perform proper operations.

It also shows visitor hiearchy for operations over different nodes of the AST, with

NodeVisitor interface at its top. The interface contains prototypes for visitor meth-

ods corresponding to different nodes. The TypeCheckingVisitor class, implements

NodeVisitor and defines type checking mechanism for different kinds of expres-
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1 /∗∗ I n t e r f a c e f o r Node h i e r a r c h y ∗/
public interface Node {

3 public void accept ( NodeVis itor ) ;
}

5 /∗∗ V a r i a b l e r e f e r e n c e Node ∗/
public c lass VarNode implements Node {

7 public void accept ( NodeVis itor V) {
// I m p l e m e n t a t i o n

9 }
}

11 /∗∗ As s i g nm e n t Node ∗/
public c lass AssignNode implements Node {

13 public void accept ( NodeVis itor V) {
// I m p l e m e n t a t i o n

15 }
}

17 /∗∗ A r i t h m e t i c Node ∗/
public c lass ArithNode implements Node {

19 public void accept ( NodeVis itor V) {
// I m p l e m e n t a t i o n

21 }

23 // /∗∗ Boo l e a n Node ∗/
// p u b l i c c l a s s Boo lNod e im p l em e n t s Node {

25 // p u b l i c v o i d a c c e p t ( N o d e V i s i t o r V) {
// // I m p l e m e n t a t i o n

27 // }
}

(a) Node hierarchy.

1 /∗∗ I n t e r f a c e f o r v i s i t o r s o v e r d i f f e r e n t Node ∗/
public interface NodeVis i tor {

3 public void vis itVarRefNode (VarNode ) ;
public void v i s i tAss ignNode ( AssignNode ) ;

5 public void v i s i tAr i thNode ( ArithNode ) ;
// p u b l i c v o i d v i s i t B o o l N o d e ( Boo lNod e ) ;

7 }
/∗∗ Type c h e c k e r f o r d i f f e r e n t Node ∗/

9 public c lass TypeCheckingVisitor
implements NodeVis i tor {

11 public void vis itVarRefNode (VarNode ) {
// I m p l e m e n t a t i o n

13 }
public void v i s i tAss ignNode ( AssignNode ) {

15 // I m p l e m e n t a t i o n
}

17 public void v i s i tAr i thNode ( ArithNode ) {
// I m p l e m e n t a t i o n

19 }
// p u b l i c v o i d v i s i t B o o l N o d e ( Boo lNod e ) {

21 // // I m p l e m e n t a t i o n
// }

23 }
/∗∗ Code g e n e r a t o r f o r d i f f e r e n t Node ∗/

25 public c lass CodeGenerat ingVis i tor
implements NodeVis i tor {

27 public void vis itVarRefNode (VarNode ) {
// I m p l e m e n t a t i o n

29 }
public void v i s i tAss ignNode ( AssignNode ) {

31 // I m p l e m e n t a t i o n
}

33 public void v i s i tAr i thNode ( ArithNode ) {
// I m p l e m e n t a t i o n

35 }
// p u b l i c v o i d v i s i t B o o l N o d e ( Boo lNod e ) {

37 // // I m p l e m e n t a t i o n
// }

39 }

(b) Visitor hierarchy.

Figure 2.5: Object-oriented implementation of visitor pattern.

sions, such as variable reference, assignment or arithmetic. Similarly, CodeGener-

atingVisitor handles their code generation. Different visit* methods delegate to

accept() methods in appropriate nodes when they have to type check, or generate

code for the AST nodes.

If we wished to extend this implementation to include type checking and code

generation for boolean expressions too, we need to implement the Node interface for

booleans, update the NodeVisitor interfaces with visit methods for this new node.

The required changes are shown as commented-out methods Figure 2.5. By requiring

changes spanning across multiple classes and methods, such an implementation leads

to possibilities of errors at multiple sites.

In subsection 2.5.3, we will investigate how aspect orientation overcomes such

modularity problems associated with the visitor pattern, by providing an alternate

implementation[31, 34, 68]. It should, however, be noted that the improvements

in modularity are achieved at the cost of small performance overhead. Improved

modularity is the primary motivation of this thesis, performance comes next.
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Subject-Observer Pattern

Another behavioral design pattern that frequently appears in compiler implementa-

tions is the subject-observer pattern, see Figures 2.3.2, 2.6, and 2.3.2. The intent of

this pattern is to “define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically”[30,

p. 293].

This pattern is used to implement two abstractions that are dependent on one-

another. For instance, consider implementation of the observer pattern in the context

of a simple figure-editor system. The requirement is to update the screen after any

changes to the underlying co-ordinates comprising a figure, such as points and lines.

As shown in 2.3.2 too, Subject represents the core or independent abstraction, and

Observer represents the variable or dependent abstraction.

1 public interface Observer {
public void update ( Subject s ) ;

3 }

5 public interface Subject {
protected L i s t obse rve r s = new LinkedList ( ) ;

7 public void addObserver ( Observer o ) ;
public void remObserver ( Observer o ) ;

9 }

Listing 2.3: Interfaces for subject-observer pattern.

1 public c lass Point implements Subject {
private int x = 0 , y = 0 ;

3 int getX ( ) { return x ; }
int getY ( ) { return y ; }

5 void setX ( int x) {
this . x = x ;

7 }
void setY ( int y) {

9 this . y = y ;
}

11 public void add ( SubjectFigElement ) {
// I m p l e m e n t a t i o n

13 }
public void remove ( SubjectFigElement ) {

15 // I m p l e m e n t a t i o n
}

17 public void addObserver ( Observer o ) {
obse rve r s . add ( o ) ;

19 }
public void remObserver ( Observer o ) {

21 obse rve r s . remove ( o ) ;
}

23 public void not i fyObserver s ( ) {
// N o t i f y e a c h o b s e r v e r

25 }
}

(a) Point class.

public c lass Line implements Subject {
2 private Point p1 , p2 ;

4 Point getP1 ( ) { return p1 ; }
Point getP2 ( ) { return p2 ; }

6
void setP1 ( Point p1 ) {

8 this . p1 = p1 ;
}

10 void setP2 ( Point p2 ) {
this . p2 = p2 ;

12 }
public void add ( Subject ) {

14 // I m p l e m e n t a t i o n
}

16 public void remove ( Subject ) {
// I m p l e m e n t a t i o n

18 }
public void addObserver ( Observer o ) {

20 obse rve r s . add ( o ) ;
}

22 public void remObserver ( Observer o ) {
obse rve r s . remove ( o ) ;

24 }
public void not i fyObserve r s ( ) {

26 // N o t i f y e a c h o b s e r v e r
}

28 }

(b) Line class.

Figure 2.6: Object-oriented implementation of subject-observer pattern.

There are two advantages to such an implementation. First, by encapsulating

17



public c lass ScreenUpdater implements Observer {
2 public void update ( Subject s ) {

// Screen update l o g i c for d i f f e r e n t observers
4 }

}
6 public c lass ViewPortUpdater implements Observer {

public void update ( Subject s ) {
8 // Color update l o g i c for d i f f e r e n t observers

}
10 }

Listing 2.6: Observer class for subject-observer pattern.

the dependent and independent abstractions into separate objects, it allows us to

vary them independently. An Observer represents the dependent abstraction, and

the Subject an independent abstraction. Next, it decouples the subject from the

observers. The subject does not need to know anything special about its observers,

other than to maintain their existence in a list. The observers simply subscribe to the

subject and receive its event notifications. An event in our example is any change

in the co-ordinate values. When the subject needs to inform its observers of an

event, it sends a notification to each observer, through notifyObservers() method in

our example. In this way, the observer pattern helps maintain consistency between

related objects without making the two classes tightly coupled.

Object-oriented implementation of the observer pattern comes with three draw-

backs however. First, addition or removal of a role from a class would entail changes

in the corresponding classes. Second, any change in the notification mechanism would

require changes in all the participating classes, Subject and Observer. Third, the

pattern code, relating to remObserver(), addObserver(), and notifyObservers(),

is scattered across different modularity units.

As we will see, aspect-orientation overcomes such problems associated with the

observer pattern, by providing an alternate implementation[34].

2.3.3 Adaptive Programming

The visitor pattern and its variants have the disadvantage that programs are not

easily adapted to changes in their inheritance and subsumption hierarchies3. Even

3A subsumption hierarchy refers to a collection, in which each entry in the hierarchy designates a set such that
the previous entry is a strict superset, the whole, and the next entry is a strict subset, the part. For example,
addition- and subtraction- expressions are part of arithmetic-expressions. Similarly, assignment-, arithmetic-, and
declaration-expression are all part of an expression.
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with separation of behavioral concerns from structural concerns, the visitor pattern

is not amenable to evolution as we would like it to be. This is because the sequence

of messages comprising operation depends on the underlying class hierarchy. Should

the class hierarchy be changed because of system evolution, the sequence of messages

usually must be changed as well, because some navigation paths have changed. As a

result, evolution mandates that the operations must always be checked and usually

reprogrammed. This is an expensive maintenance task.

Adaptive programming fills this void. This technique helps encapsulate class

hierarchies using traversal strategies and visitors[46]. A traversal strategy describes

a walk over data structures at a high level. It refers only to a minimal number of

classes in a program’s object model: the root of the traversal, the target classes,

and waypoints and constraints in between to restrict the traversal to follow only the

desired set of paths[46]. The visitors describe what to do at the specified points in

traversal. In conjunction with the object model, a travel strategy helps to define

methods that implement the traversal. An application behavior on the whole is

defined by a collection of traversal strategies and visitors. Often, traversal strategies

remain the same even when an object model changes slightly. In other cases, new

traversal methods can be implemented in accordance with the new model, and the

behavior can adapt to the new structure.

As an example, consider checking for undefined types in an XML schema contain-

ing a list elements and attributes. An element and an attribute declaration consists

of names and types, which are defined as values of the corresponding attributes. Our

task involves two traversals of the object structure representing the schema defini-

tion: one to collect all the types defined in the schema, and one to check each type

referenced by a declaration to see if it is in the set of defined types. Implementation

of these traversals in DJ[59], is shown in 2.3.3.

A DJ traversal is performed by calling the traverse method on an object. It takes

three arguments: the root of the object structure to be traversed; a string specifying

the traversal strategy to be used; and an adaptive visitor object describing what to

do at points in the traversal.

In this example, the getDefinedTypeNames method collects the set of all type
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stat ic f ina l ClassGraph cg = new ClassGraph ( ) ;
2 public Set getDefinedTypeNames ( ) {

f ina l Set de f = new HashSet ( ) ;
4 cg . t r a v e r s e ( this , " from Schema via -> TypeDef , attrs ,* to Attribute " ,

new Vi s i t o r ( ) { void be f o r e ( Att r ibute host ) {
6 i f ( host . name . equa l s ( " name " ) )

de f . add ( host . va lue ) ; }} ) ;
8 return de f ;

}
10

public Set getUndefinedTypeNames ( ) {
12 f ina l Set de f = getDefinedTypeNames ( ) , undef = new HashSet ( ) ;

cg . t r a v e r s e ( this , " from Schema via -> Decl , attrs ,* to Attribute " ,
14 new Vi s i t o r ( ) { void be f o r e ( Att r ibute host ) {

i f ( host . name . equa l s ( " type " )
16 && ! de f . conta in s ( host . va lue )

undef . add ( host . va lue ) ; }} ) ;
18 return undef ;

}

Listing 2.7: DJ Implementation of traversal over XML schema.

definition names in a schema: it traverses the object structure rooted at the Schema

object to every Attribute object reachable through the attrs field of a TypeDef

object, and adds the attribute value if the attribute name is name’. Traversal

getUndefinedTypeNames also traverses from Schema to Attributes, but it has dif-

ferent constraints: it collects at attributes of Decl objects.

As we see, a traversal strategy specifies the end points of the traversal, using the

from keyword for the source and the to keyword for the target(s). In between, any

number of constraints can be specified with via or bypassing. The benefit here

is that the traversal strategy is oblivious to any specific association or hierarchies

between the intermediate objects. Further, the traversal strategy will adapt itself if

the root, target and the intermediate constraints remain the same, even if the object

model changes. In this way, Adaptive Programming serves to separate the object

structure from traversals upon them, thereby allowing independent changes to each.

Having looked at existing modularity techniques, we now proceed to investigate

modularity problems in compilers from a broader perspective.

2.4 Modularity in Compilers

Conventional approaches to compiler construction view program source code as data,

and different phases as functions operating on this data. Although, this is a gen-

erally accepted approach, it fails to meet the additional requirements of language

specification, especially with respect to software engineering goals. Some of these
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are:

• flexibility of compilation sequence,

• reuse of existing artifacts,

• extension of language models, and

• retargeting of compilers to different platforms.

Although the compilation process is decomposed into multiple phases, each phase

itself is usually a large and complex entity with many inter-dependencies. A phase

is often riddled with other smaller, but integral phases. For instance, a type evalua-

tor must deal with other phases such as, symbol table maintenance, error handling,

logging and pretty-printing. As a result, the type-evaluator module consists of code

corresponding to these other operations, in addition to its own. Hence, the notion

of re-usability has no concrete supporting mechanism in compiler construction. This

means building a compiler often involves starting from scratch, even when similar

applications are available. Hence, in addition to functional decomposition, there is

need for another level of decomposition at the structural level for improved modu-

larity, and its resulting benefits thereof.

From observation of several compilers, and literature reviews of language design

and extension models, we have identified a number of impediments to modular lan-

guage implementation. Here, first we identify such issues related to modularity in

compilers. Then, we present a literature review of work related to aspect orientation

applied to compilers for managing their complexity and modularity.

2.4.1 Modularity Issues

We explore the modularity issues in compilers at both the structural and semantic

levels. Current compiler design and implementation techniques lead to three major

classes of problems, which hinder their modularity, namely:

1. Tangling of semantics with syntax

The first modularity problem of language implementation resides at the struc-

tural level. In parser generators, such as YACC, syntax specifications and se-

mantic actions are juxtaposed in the grammar specification file. The language
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syntax is described by a formal specification, and semantics is implemented in

a general purpose programming language. The semantics is usually attached

to each grammar rule in the parser specification as action codes. The action

codes are copied into the generated parser and are invoked when a production

is reduced or derived. This tangling of action semantics and language syntax

specification leads to coupling of two different concerns. This results in a large

grammar specification file, polluted with action semantics. In summary, it leads

to code that is hard to read and maintain.

This problem has been addressed to some extent with second generation parser

generator tools. LL(k) parsers such as JavaCC+JJTree, and ANTLR employ

visitor pattern for better separation of concerns. However, they still contain

some traces of semantic actions in the grammar specifications. As discussed

in subsection 2.3.2, modularity problems persist even with the use of visitor

pattern. These problems can be addressed with AOP techniques.

2. Non-modular semantics

Although code is composable, compiler semantics is not compositional. Modular

semantics would allow us to compose smaller semantics to infer broader meaning

for better comprehension of the semantics that the compiler implements. There

is a rich literature on modular semantics and compositional semantics[45, 63].

Still, none of these solutions achieve modular semantics convincingly and with-

out restrictions[13, 74].

As we can have a modular compiler, with non-modular semantics; we do not

delve into the details of modular semantics and their composition here.

3. Intertwined phase implementations

The core of compiler development involves multiple passes over the abstract

syntax tree (AST) that represents the source program. Typically, there are a

number of analysis phases, each of which contains semantic operations cross-

cutting the AST structure.

Existing object-oriented approaches to compiler implementation encapsulate the

semantic actions pertaining to one node as a method of that node class. This
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approach leads to a problem where code related to one semantic phase scatters

all over the AST node class hierarchy. For instance, operations such as opti-

mization, error handling, and symbol table updates affect several other phases

of a compiler and are present in every node. As with semantic behavior, their

implementation is also scattered over the implementation of other functionality.

This makes the resulting system hard to maintain and evolve.

A commonly employed solution to this problem is the visitor pattern. Semantic

behaviors pertaining to a specific phase are encapsulated inside a single vis-

itor class, and the actions are carried out using redirection. Each node in a

visitor hierarchy has a general accept() method associated with it, which can

redirect a semantic evaluation request to the appropriately specified method in

the visitor class. We separate functional operations from the object structure.

The benefit of using this pattern is that each traversal phase is isolated as a

class that is independent of other nodes’ classes and can be freely modified or

extended. However, visitor pattern approach has a number of side effects, as

discussed previously in subsection 2.3.2.

Some of these problems can be addressed by leveraging the abstraction, encap-

sulation, and modularization power of Aspect Oriented Programming.

2.5 Aspect Oriented Programming

Over the last decade, several language mechanisms have developed that claim to

enhance expression, and modularization of cross-cutting concerns. Amongst them,

Aspect Oriented Programming has become prominent, because:

• it is a powerful descriptor of control-flow overlays,

• it supports the notion of open classes, for enhanced modularity, and

• it blends well with the existing programming paradigms, such as Object Ori-

ented Programming (OOP)[9].

A cross-cutting concern is one that is scattered and tangled with an existing

implementation because of expressive limits of the language. These concerns do
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not normally fit into a single program module, or even a small number of closely-

related program modules. It is behavior and associated data that spreads across the

scope of several features of a software. For instance, it may be a constraint that is

characteristic of a piece of software, or shared behavior that every class must exhibit.

Common examples of cross-cutting concerns are logging, profiling, context-sensitive

error-handling, performance optimizations, and design pattern implementations.

Code and control flow pertaining to a cross-cutting concern often intertwine with

those of other concerns. Therefore, modifying the implementation of a cross-cutting

concern often involves numerous edits in many places. AOP complements OOP by

facilitating another type of modularity that pulls together such widespread imple-

mentations of a cross-cutting concern into a single unit.

Among several implementations of AOP technology, AspectJ is the most richly-

featured and popular one. In this section, we first give a primer of the AOP con-

structs, in the context of AspectJ language. In particular, we will look at those

constructs that will be needed in comprehending the examples and descriptions in

this thesis. Next, we will illustrate how aspect-oriented language constructs assist us

in achieving improved modularity. Last, we compare and contrast AOP and other

existing modularization techniques.

2.5.1 Aspect Oriented Programming Constructs

The ability of an AOP language to support modularization of cross-cutting concerns

derives from the representational power of join point model (JPM), open-class sup-

port of inter-type declarations, and abstraction capability of aspects. We explore

these language constructs here. They are shown in Figure 2.7.

Join Point Model

The JPM defines the “structure of dynamic cross-cutting concerns”[50, p. 2], and

comprises concepts of :

1. join points - these are principled points in program execution or static loca-

tions in the source code. They enable access to the latent control structure of

the language semantics. Examples of join points are method calls, method-body

24



Aspect 

Inter-type 

Declaration 

Advice 

Advice Body 

Pointcut 

Flow Graph 

Join point 

int x = 2; 

… 

… 

Figure 2.7: Aspect-oriented programming constructs.

evaluations, and class instantiations. AspectJ exposes only a small principled

set of such events, identified by different kinds of join points. They are shown

in Table 2.2.

Table 2.2: Description of join point kinds.
Join point kinds Description

method or represents execution points after method arguments are evaluated,
constructor call but before the method or constructor is called.

method or
represents execution points of a method or a constructor.constructor execution

field access represents read or write access to the field of a class.

exception handler represents execution of exception handlers of specific types.

class-initialization represents execution of static-class initialization of specified types.

lexical structure based
represents all join points inside a class or method’s lexical structure.

captures the code lexically inside a class, including an inner class.

control flow based
represents certain join points in a set of join points

that occur in the control flow of some event.

Figure 2.8 summarizes different join points and their semantic descriptions. The

numbered boxes in the left hand side represent different events, and the right

hand side of the figure describes these events. For instance, the box labelled

1 represents an event before the execution of a method called main of the Foo

class. An additional criterion is that the method should have a void return
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type, and should take a String array as an argument.

public class Greeter { 

    public static void main(String[] args) { 

 Greeter person =  new Greeter(); 

 person.sayHi(); 

   } 

    public void sayHi() { 

 String personName = this.getName(); 

 System.out.println("Hi " +  personName); 

    } 

    public Greeter() { 

 this._name  =  "somePerson"; 

    } 

    public Greeter(String name) { 

 this._name  =  name; 

    } 

   public String getName() { 

 return  _name; 

 System.out.println("Name Returned "); 

   } 

    private String _name; 

} 

1 

1.   before execution(void Greeter.main(String[])) 
6.   before execution(void Greeter.sayHi()) 
18. before execution(String Greeter.getName()) 
5.   after execution(void Greeter.main(String[])) 
4.   after execution(void Greeter.sayHi()) 
21. after execution(String Greeter.getName()) 

3.   before call(void Greeter.sayHi()) 
7.   before call(String Greeter.getName()) 
2.   before call(Greeter.new()) 
4.   after call(void Greeter.sayHi()) 

10. before execution(Greeter.new()) 
14. before execution(Greeter.new(String)) 
13. after execution(Greeter.new()) 
17. after execution(Greeter.new(String)) 

19. before get(String Greeter._name) 
20. after get(String Greeter._name) 
11, 15. before set(String Greeter._name) 
12, 16. after set(String Greeter._name) 

0  – 22  within(Greeter) 
19 – 20 withincode(String Greeter.getName()) 

14 – 17 cflow(execution(Greeter.new(String))) 
15 – 16 cflowbelow(execution(Greeter.new(String))) 

A and B withincode(void Greeter.sayHi()) 
6 – 9, and 18 – 21  
             cflowbelow(execution(void Greeter.sayHi())) 
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Figure 2.8: Examples of join points and their descriptions.

2. pointcut - it is a language construct that provides a means of specifying a set

of join points, and their contexts. AspectJ includes several primitive pointcuts.

These pointcuts can be composed to create compound pointcuts using and, or,

and not operators (‘&&’, ‘||’, and ‘!’).

Pointcuts help us define join points of interest. For instance, if we wish to

identify dynamic join points based on lexical structure, we use the within and

withincode pointcuts. In Figure 2.8, the pointcut within(Foo) represents join

points within the Foo class, and withincode(int Foo.bar()) represents those

within the method bar() of the Foo class. These pointcuts are anonymous,

because they do not have any identifiers. We can also create named pointcuts,

as shown here:

1 pointcut FooScope ( ) : within (Foo ) ;

Listing 2.8: Example of a pointcut.
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In this code, the keyword pointcut declares that what follows is a declara-

tion of a pointcut, named FooScope, with trailing parentheses suggesting that

the pointcut does not collect any context. Table 2.3 summarizes the primitive

pointcuts along with their descriptions.

Table 2.3: Primitive pointcuts and their matching join points.
Pointcut Description

call(signature )
join points at which a method or a constructor called matches the
method signature: retType rcvrType.method id(paramType1,...)
or constructor signature: classTypeName.new(paramType1, ...)

get(signature )
join points matching execution of read or write access to a field
with field signature: fieldTypeName objectTypeName.fieldID

handler(typePattern )
join points matching execution of an exception handler matching
the exception type-pattern: throwableTypeName

staticinitialization join points matching execution of static blocks of a class matching
(typeName ) typeName

cflow(pointcut ) join points in the control flow of events represented by pointcut,
cflowbelow(pointcut ) including/excluding those represented by the pointcut itself

this(typeName ) join points where the executing instance or
target(typeName ) the instance on which the method is called is of type typeName

args(typeName1, join points where the first argument is of type typeName1,
..., contains any number and types of other arguments,
typeNameN) and the last argument is of type typeNameN

if(booleanExpression ) join points where the booleanExpression evaluates to true

within(typePattern )
join points where the executing code is defined in a type
matched by typePattern

withincode(signature )
join points where the executing code is defined in a method
or constructor whose signature matches signature

3. advice - it is a means of affecting the semantics at the join points, by changing

behavior before, after, or around the chosen join points. For instance, we wish

to trace all the usages of the field x of the class Foo shown in Figure 2.8. First,

we capture all the control points which access the value of x, with the pointcut

get(int Foo.x). Now that we have identified the join points of interest by

means of pointcuts, we would like to execute some code before every access to

value of x. We might write:

1 before ( ) : get ( int Foo . x ) {
System . out . p r i n t l n ( " Reference to field x , at "+

3 thisJoinPoint . g e tS ignature ( ) . t oS t r i ng ( ) ) ;

}

Listing 2.9: Simple before advice.
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In this example, thisJoinPoint is a special reflective object that allows access

to the run-time context in which the join point executes. Here, we use it to

display the name of the event that triggers reference to the variable x within

the objects of class Foo.

Construction of after advice is also similar. A change in decision to print the

message after the field access, instead of before, involves replacing the keyword

before with after. Additionally, there are two special cases of after advice,

after returning and after throwing, corresponding to the two ways a sub-

computation can return from a join point.

The third form of advice is the around advice, the most powerful form of all. It

can not only read contextual information, but also change that information4 and

can even control whether the original join point computation should be done

at all. It allows us to affect the join point at the time when the computation

is imminent with the special proceed() construct. The proceed() expression

takes a set of arguments and passes them on to the underlying join point.

Consider the class Foo in Figure 2.8. If we wish to add a post-condition to

the method bar() specifying that it should return an integer 1 in cases where

it returns an integer 0, this requirement can be implemented with an around

advice as shown in Listing 2.10.

int around ( ) : execution (Foo . bar ( ) ) {
2 int r e t = proceed ( ) ;

i f ( r e t == 0) {
4 r e t = 1 ;

}
6 return r e t ;

}

Listing 2.10: Simple around advice.

This advice executes the computation at the join point represented by execution-

(Foo.bar()). Based on its value, the advice either returns the original value or

1 if the calculated result is 0. Note that the around advice must be annotated

with the return type, in contrast to the simpler before and after advices.

4Not entirely, cflow captured contextual information is immutable.
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Inter-type Declarations

This is a concept AOP adopted from other techniques, such as mix-ins[7]. Inter-type

declarations (ITDs) allow us to “statically introduce behavior to existing classes

using static crosscutting techniques”[54, p.166].The concept of ITDs is also available

in other languages, such as Modula-2 and Ada. They enable us to declare attributes,

methods, and constructors on behalf of other existing classes. By doing so, they

support the notion of open classes. Additionally, they allow classes to extend from

new parents and change the inheritance relationship between classes using declare

parents constructs. By providing facility of introduction, inter-type declarations

also support concepts of mixin classes and multiple inheritance. Consider the Point

class in Listing 2.11. It represents a point in a two-dimensional space.

1 class Point {
int x , y ;

3 Point ( int x , int y ) {
this . x = x ;

5 this . y = y ;
}

7 public void setX ( int x ) {
this . x = x ;

9 }
public void setY ( int y ) {

11 this . y = y ;
}

13 public int getX ( int x ) {
return this . x ;

15 }
public int getY ( int y ) {

17 return this . y ;
}

19 }

Listing 2.11: Point Class.

If we wish to extend its representation to use it in a three-dimensional space, we

can implement this using inter-type declarations as shown in Listing 2.12.

1 int Point . z ;
public void Point . setZ ( int z ) {

3 Point . z = z ;
}

Listing 2.12: Inter-type declarations to make Point suitable for 3-D space.

Here, the first statement introduces an integer member named z into Point class.

Likewise, the method setZ() (lines 2–4) adds a new method to this class. Thus, this

class now represents a point with three coordinates.

Further, if wish to make the point cloneable, we can extend the class to im-
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plement the Cloneable interface using the declare parents construct (line 1 in

Listing 2.13). Listing 2.13 shows two inter-type declared methods, slowClone()

and fastClone() that provide two different implementations of cloning operation.

dec l a r e parents : Point implements Cloneable ;
2

public Point Point . s lowClone ( ) {
4 Point temp = new Point ( ) ;

tempPoint . setX ( this . getX ( ) ) ;
6 tempPoint . setY ( this . getY ( ) ) ;

return tempPoint
8 }

10 public Point Point . f a s tC lone ( ) {
return new Point ( this . getX ( ) , this . getY ( ) ) ;

12 }

Listing 2.13: Inter-type declarations to make Point class Cloneable.

At this point, we would like to introduce another declare statement, declare

precedence, that is used in further discussions. AspectJ does not define the default

order in which advices should be applied, when advices from multiple aspects match

a common join point. In some situations, it is important to apply certain aspects in

a chosen order. For instance, consider two aspects: one checking method invariants,

and the other checking access permissions to that method. Essentially, the aspect

dealing with access permission should be applied before the invariant-checking as-

pect. In such situations, the declare precedence statement is used to specify the

desired order of application of the aspects. It is also defined inside an aspect, and is

of the form:

declare precedence: TypePatternList ;

Aspect

Finally, an aspect abstracts the modular implementation of cross-cutting concerns

by encapsulating pointcuts, advices, and inter-type declarations for a single concern

into a single module[40]. It provides a unit of modularity for a cross-cutting concern,

enabling us to separate scattered logic from the classes in which it was previously

tangled, and place it in a module of its own. Listing 2.14 shows a simple aspect that

encapsulates the ITDs from Listing 2.12. An aspect resembles a class in many ways:

it can contain methods and fields, extend other classes or aspects, and implement

interfaces. However, aspects differ from classes in that they cannot be instantiated
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aspect PointIn3D {
2 int Point . z ;

public void Point . setZ ( int z ) {
4 Point . z = z ;

}
6 }

Listing 2.14: A simple aspect.

using new. An aspect can be abstract, as can any named pointcut. Abstract

pointcuts act similarly to a class’s abstract methods: they let us defer details to

derived aspects. A concrete aspect extending an abstract aspect must then provide

concrete definitions of abstract pointcuts.

Aspect Instantiation Although users are not permitted to instantiate aspects, they

can define the manner in which aspects should be instantiated. By default, AspectJ

creates one instance of an aspect for an aspect type. Alternately, it can also be

specified as follows:

aspect issingleton()

There are four other ways of instantiating aspects, using per-clause and specifying a

pointcut as its argument:

• perthis– it creates an aspect-instance for each object bound to this at join

points described by the argument pointcut.

• pertarget– it creates an aspect-instance for each object bound to target at

join points described by the argument pointcut.

• percflow– it creates an aspect-instance for each object that exists in the control

flow of the specified pointcut.

• percflowbelow– it creates an aspect-instance for each object that exists in the

cflow-below of the specified pointcut.

Here is an example of its usage:

Development Aspect A development aspect is written during development of an

application. Although it may not appear in the final product or application be-

ing shipped, it aids developers in various ways such as: limiting the scope of search,
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aspect AspectPerShadowMunger perthis ( shadowMungerCreation ( ) {
2 pointcut shadowMungerCreation ( ) :

execution (ShadowMunger . new ( . . ) ) ;
4 . . .

. . .
6 }

Listing 2.15: Aspect instantiation example.

enforcing development-policies, logging information, and tracing code segments. Ap-

pendix A shows some development aspects that we used during aspect-oriented mod-

ularization of ajc.

2.5.2 Aspect Oriented Programming and Modularity

AOP strives to cleanly separate concerns to overcome the problems discussed above.

Consider snippet of code shown in Figure 2.9. It has two classes: Point and Line,

intended for use in a graphics editor. A point represents co-ordinates in a two-

dimensional space, and a line has two points, which denote its two ends. Now,

consider the need to update the display every-time any coordinate changes. With a

traditional OO approach, this entails inserting calls to Display.update(), a method

responsible for updating various figure elements, after any coordinate is assigned a

value. The resulting classes with these requirements are shown in Figure 2.9.

Although display updating is a concern distinct from setting the coordinate values,

its implementation is tangled with the methods responsible for setting the coordi-

nates. Further, the code related to display updating concern is not only scattered

across several setX(), setY(), setP1(), and setP2() methods, but also across dif-

ferent classes. Thus, its implementation is not localized, thereby making its evolution

cumbersome. Any need to change the display update concern would require us to

track all the places where it occurs, and modify all the related classes. Further, this

leads to the danger of inconsistent changes, if any one of these places is neglected or

incorrectly modified.

Now, consider an aspect-oriented implementation of the display update concern.

The base classes would remain unchanged, as shown in Figure 2.9. The additional

functional requirement is now implemented in its own aspect, shown in Figure 2.10.

By means of pointcuts, we first specify all the points in program control flow, where
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/∗ Point c l a s s ∗/
2 class Point {

private int x = 0 , y = 0 ;

int getX ( ) { return x ; }
6 int getY ( ) { return y ; }

void setX ( int x ) {
this . x = x ;

10

}
void setY ( int y ) {

this . y = y ;
14

}
}

18 /∗ Line c l a s s ∗/
class Line {

private Point p1 , p2 ;

22 Point getP1 ( ) { return p1 ; }
Point getP2 ( ) { return p2 ; }

void setP1 ( Point p1 ) {
26 this . p1 = p1 ;

}
void setP2 ( Point p2 ) {

30 this . p2 = p2 ;

}
}

(a) Simple Point and Line classes.

/∗ Point c l a s s ∗/
2 class Point {

private int x = 0 , y = 0 ;

int getX ( ) { return x ; }
6 int getY ( ) { return y ; }

void setX ( int x ) {
this . x = x ;

10 Display . update ( this ) ;
}
void setY ( int y ) {

this . y = y ;
14 Display . update ( this ) ;

}
}

18 /∗ Line c l a s s ∗/
class Line {

private Point p1 , p2 ;

22 Point getP1 ( ) { return p1 ; }
Point getP2 ( ) { return p2 ; }

void setP1 ( Point p1 ) {
26 this . p1 = p1 ;

Display . update ( this ) ;
}
void setP2 ( Point p2 ) {

30 this . p2 = p2 ;
Display . update ( this ) ;

}
}

(b) Display Update: OO implementation.

Figure 2.9: Object-oriented implementation of display-update concern.

display update should occur. Then, by means of the after() advice, we spec-

ify the display update behavior to instrument at the chosen points. Compared to

the previous object-oriented implementation, this implementation localizes all the

display-update-related code into a single module.

Any maintenance or update of the display concern would entail changes only in

this aspect, thereby making its evolution simple. For instance, improving or adapting

this aspect to implement display update in a three-dimensional co-ordinate system,

might resemble in Figure 2.10. In this example, the pointcut call (* *.set*(..))

contains a wild card pattern. It represents a call to any method whose name starts

with “set”, regardless of its containing type, return type and arity, and type of

formals. In our example, since we are dealing with only two classes, namely Point

and Line, it captures calls to all the setX(), setY(), setZ() (for 3-D), setP1(),

and setP2() methods. This representation is more succinct than the previous one

and is also more expressive in nature5.

5But it does require discipline and standardization in naming; adding a method such as setupCache() would be
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aspect DisplayUpdate {
po intcut move( Figure f i g ) :

3 c a l l (void Point . setX ( int ) ) | |
c a l l (void Point . setY ( int ) ) | |
c a l l (void Line . setP1 ( Point ) ) | |
c a l l (void Line . setP2 ( Point ) ) ;

7

a f t e r ( Fig f i g ) r e tu rn ing : move( f i g ) {
Display . update ( f i g ) ;

}
11 }

(a) Display update: aspect-oriented implementation.

1 aspect DisplayUpdateExtension {
po intcut move( Figure f i g ) :

c a l l (∗ ∗ . s e t ∗ ( . . ) ) ;

5

a f t e r ( Figure f i g ) r e tu rn ing : move( f i g ) {
9 Display . update ( f i g ) ;

}
}

(b) Extension of DisplayUpdate aspect.

Figure 2.10: Aspect-oriented implementation of display-update concern.

Further, as this concern is implemented as a pluggable construct, we could easily

disable this implementation when not required. Likewise, as the concern implemen-

tation is free of any other concerns, we could easily adapt this aspect to implement

similar concern in other applications also.

In these ways, aspect-orientation supports capturing of cross-cutting concerns,

and enhances the modularization capability of existing programming paradigms.

Note here that the cross-cutting display update concern that is scattered and tangled

in a non-AOP implementation remains cross-cutting in nature, but it is no longer

scattered and tangled in an AOP implementation.

2.5.3 Comparison of AOP and Existing Modularity Techniques

This section compares and contrasts aspect-oriented techniques in relation to other

popular existing practices employed to deal with the cross-cutting concerns. From

this, we will realize how AOP is naturally suited to handling the cross-cutting con-

cerns, and recognize its benefits over other techniques in terms of expressiveness,

re-usability and modularity.

problematic.
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Mix-in Classes

As we saw in subsection 2.3.1, mix-ins enable us to uniformly extend a set of classes

with a set of fields and methods. Although this can also be done with languages that

support multiple inheritance, AOP allows us to do this with inter-type declarations

and does not require us to directly set up/change an inheritance hierarchy. Further,

in AOP, pointcuts help us expose runtime information to advices, whereas mixins

only provide text substitution at the matched points.

Design Patterns

Here, we compare AOP with the two behavioral design patterns we described in

subsection 2.3.2

1. Visitor Pattern

The intent of the visitor pattern is to add behavior to an existing class hierarchy.

AOP allows us to statically inject new operations into a class while keeping its

original definition intact.

For instance, consider the example shown in Figure 2.5. Adding support for

boolean expressions would require us to make changes across several places in

this hierarchy, as indicated by dispersed nature of the required code, shown as

commented-out methods. With aspect-oriented programming, we can realize

the equivalent behavior by means of an aspect, shown in Listing 2.20.

1 /∗∗ In te r face for Node hierarchy ∗/
privileged public aspect BooleanImplementor {

3 /∗∗ Extend the Node hiearchy with BoolNode ∗/
dec l a r e parents :

5 public c lass BoolNode extends Node ;
/∗∗

7 ∗ Implement for BoolNode , the accept method
∗ derived from Node in t e r f a c e ∗/

9 public BoolNode . accept (Node ) {
//Implementation

11 }
/∗∗ Add typechecking v i s i t o r for BoolNode ∗/

13 public void TypeCheckingVis itor . v i s i tBoo lNode (BoolNode ) {
//Implementation

15 }
/∗∗ Add code generat ing v i s i t o r for BoolNode ∗/

17 public void CodeGenerat ingVis i tor . v i s i tBoo lNode (BoolNode ) {
//Implementation

19 }
}

Listing 2.20: Aspect for type-checking and code generation of boolean nodes.
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Hence, defining a hierarchy of new visitor classes and adding numerous accept()

methods into the classes of the target hierarchy is not necessary. With AOP,

adding a new behavior would mean creation of a concrete visitor aspect that in-

troduces the corresponding method into all the classes, as shown in Figure 2.11.

Likewise, removal of one such aspect would remove the associated behavior from

the classes.

VisitableElement 
<<Interface>> 

Operation1()  

Aspect  
weaving 

Effect of  
weaving 

ConcreteElement1 

Operation1() 
 …  

ConcreteElement2 

Operation1() 
 …  

Aspect1 

ConcreteElement1.NewOp1() 
ConcreteElement2.NewOp1() 

Aspect2 

ConcreteElement1.NewOp2() 
ConcreteElement2.NewOp2() 

VisitableElement 
<<Interface>> 

Operation1()  

ConcreteElement1 

Operation1() 
NewOp1() 
NewOp2() 
…  

ConcreteElement2 

Operation1() 
NewOp1() 
NewOp2() 
 …  

Figure 2.11: Aspect-oriented visitor pattern implementation.

Further, direct addition of operations to the object hierarchy in a static manner

serves to remove the indirection operations and the associated problems. Instead

of specifying the traversal code by means of visitors, they are now introduced

by aspects. The outcome of this aspect oriented implementation is the class

hierarchy, similar to the one shown in lower half of Figure 2.11. The design by

itself is modular because particular operation for all relevant types is localized in

one dedicated aspect. Further, the absence of double-dispatch leads to a simpler

design. At run-time, the separation of the base system from the way in which
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public abstract aspect ObserverProtocol {
protected interface Subject { }
protected interface Observer { }

4
protected L i s t getObservers ( Subject s )
{

// Re t u r n l i s t o f o b s e r v e r s
8 // o f S u b j e c t s .

}
public void addObserver ( Subject s , Observer o )
{

12 // Add O b s e r v e r o t o t h e l i s t o f O b s e r v e r s
// o f S u b j e c t s .

}
public void remObserver ( Subject s , Observer o )

16 {
// Remove O b s e r v e r o f r om t h e l i s t o f
// O b s e r v e r s o f S u b j e c t s .

}
20 abstract protected po intcut

subjectChange ( Subject s ) ;
abstract protected void

updateObserver ( Subject s , Observer o ) ;
24 a f t e r ( Subject s ) : subjectChange ( s ) {

// c a l l u p d a t e O b s e r v e r ( ) me t hod on
// e a c h o b s e r v e r o f S u b j e c t s .

}
28 }

(a) Abstract observer aspect.

public aspect CoordinateObserver extends
ObserverProtocol {
dec l a r e parents : Point implements Subject ;
d e c l a r e parents : Line implements Subject ;
d e c l a r e parents : Screen implements Observer ;

protected po intcut subjectChange ( Subject s ) :
( c a l l (void Point . setX ( int ) ) | |
c a l l (void Point . setY ( int ) ) | |

10 c a l l (void Line . setP1 ( Point ) ) | |
c a l l (void Line . setP2 ( Point ) ) ) &&

targe t ( s ) ;

protected void updateObserver ( Subject s ,
Observer o ) {

// Upda t e l o g i c and i m p l e m e n t a t i o n .
}

}

(b) Concrete observer aspect.

Figure 2.12: Aspect-oriented subject-observer pattern implementation.

visitors visit the elements in the base systems is not present anymore, which

eliminates the associated messaging overhead. In this way, aspect-orientation

eliminates the need for visitor with its inherent support for open classes[14, 55],

or introductions, and natural composition of textually separate modules into a

logical whole.

2. Subject-Observer Pattern

As discussed in 2.3.2 object-oriented implementation of the observer pattern is

plagued by code scattering and tangling problem. Further, the pattern code

is not easily reusable. Aspect orientation overcomes such problems associated

with the observer pattern. Figure 2.12 shows aspect oriented implementation

of this pattern. This implementation abstracts and localizes those concerns of

the pattern that are common to all potential implementers of the pattern. Ex-

amples are: existence of subject and observer roles, publish-subscribe relation

between the subjects and observers, and the event notification phenomenon.

Additionally, it localizes the implementation of details specific to each instanti-

ation of this pattern. Examples of such details are: specific classes which behave

as subjects/observers, events that should trigger the update notifications to the

observers; and the logic and mechanism of updates in the observers. Such details

are implemented in a separate module. In our example, they are implemented
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in the concrete aspect named CoordinateObserver.

In this way, aspect-oriented implementation of subject-observer pattern helps to

extract and localize common details into a re-usable abstract aspect, by keeping

intact its existing advantages.

Adaptive Programming

From a distance, Adaptive Programming appears to be a special case of AOP[46].

AOP, however, provides much broader support for separation of concerns. In ad-

dition, it provides us the ability to define and instrument behavior at chosen join

points, unlike AP.

2.6 AJC: A Compiler for Aspects

Having decided to explore modularity issues in compilers, we have chosen to demon-

strate our modularization endeavor in the AspectJ compiler (ajc). AspectJ is an

aspect-oriented extension to Java, and has become the widely used, de-facto stan-

dard for Aspect Oriented Programming. It is written in Java, and like the Java

compiler, it compiles programs written in Java to bytecodes. Although it is an

aspect-oriented compiler, it surprisingly does not incorporate aspects to modular-

ize the cross-cutting concerns within itself. Further, to support weaving from both

source code and compiled code, often the compiler has to guarantee the correctness

of a single piece of functionality at both these levels of weaving. Hence, the need

and opportunity for handling the same concern at different levels in ajc provides

a high level of complexity in modularization, over other mainstream compilers. A

sizable number of committers, end-users, and its popularity were additional motiva-

tions that helped us establish the suitability of ajc for our purpose. What follows is

a brief overview of ajc and its two passes.

2.6.1 Overview of the AspectJ 1.6.4 compiler

The ajc is primarily designed as a two-stage pipeline: an extended Java compiler

and a binary weaver. We will first look at different components of ajc. Then, we

provide a brief overview of its weaving and compilation process.
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Components of ajc

1. Compiler : ajc (org.aspectj.ajdt.core) is an extension of the Eclipse Java De-

velopment Tool (JDT) compiler(org.-eclipse.jdt.core). Its parser has been ex-

tended in a recursive-decent manner to recognize and process AspectJ syntax.

The extension acts as a pattern matcher for various AspectJ constructs, such

as inter-type declarations, pointcuts, aspects, declare parents and declare soft.

Also, it extends the Eclipse type resolution system to account for inter-type

declarations. It produces plain Java class files as output.

2. Weaver : In addition to the normal front-end and back-end components of a

compiler, ajc also contains a weaver. It provides bytecode weaving functional-

ity both for inter-type declarations and advices. The weaver understands the

attributes attached to aspects during compilation and performs the necessary

pointcut matching and bytecode rewriting, or weaving.

3. Runtime: This module consists of classes that are used by generated code

during runtime.

Overview of ajc passes

An overview of the compilation and weaving process of AspectJ 1.6.4[38], is depicted

in Figure 2.13.

ajc first performs a shallow parse on all source files and generates the abstract

syntax tree (AST). It collects and handles all AspectJ specific data and constructs,

such as aspect names, hierarchy, and precedence, in a special way. For instance,

an aspect declaration is parsed similarly as a type declaration. Likewise, pointcut

declarations are implemented as a sub-type of abstract method declarations, and

advice declarations are treated as method declarations. This also involves annotating

the AST with additional aspect information attributes.

These compilation units6 are then passed through AjLookupManager for type bind-

ing, and for generating the type hierarchy to be used with the AST. This helps to de-

lineate connections between different parts of a program, and thus, enables clients to

6A compilation unit refers to the root node of the AST corresponding to a given Java source file.
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Figure 2.13: Overview of compilation and weaving of ajc.

analyze a program’s structure more deeply. Type binding involves adding synthetic

types to the type hierarchy to manage bindings resulting from AspectJ extensions.

Examples are support for EnclosingType, this, target, and declare constructs.

Synthetic types are empty/uninitialized fields, methods and type information such

as super classes and super interfaces. They will be initialized correctly in a later

stage. In addition to synthetic type creation, this stage generates bridge methods to

override certain inherited methods, associated with aspects.

With respect to type-safety, the weaver-end of ajc contains certain typing-rules

to which the aspect modules and its introductions should conform. Currently, the

AspectJ language’s type system ensures that advice code is executed at a join point
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only if the advice signature is stronger than the signature of an intercepted join

point[19, p.61]7.

This is followed by a deeper parse of the source files. During this phase, ajc

delegates8 to several other methods in the weaver to carry out annotation inser-

tions and further analyses of the AST. The method calls construct annotated AST

nodes with valid method and type declarations from the synthetic types, created ear-

lier. These postParse methods, such as PointcutDeclaration.postParse, AdviceDecla-

ration.postParse, DeclareDeclaration.postParse, and PseudoToken.postParse, allow

ajc to use the standard Eclipse code that analyzes a method body for analysing an

advice body. Other postParse processing includes:

• generation of an aspect precedence relation from declare precedence state-

ments,

• processing of inter-type declarations introduced by declare parents,

• name mangling of inter-type declaration members,

• completing the body of incomplete methods, classes and other types, which

were created as part of shallow parsing. This involves annotating synthetic

methods with additional attributes to indicate that they correspond to advice

declarations, and also to store the pointcut referred to by the advice. Further-

more, additional arguments are added to the synthetic types to store additional

information relevant to thisJoinPoint and proceed constructs, and

• removing of any ambiguities in the AST.

After postParse, the incomplete synthetic types generated during shallow parsing

are, completed with all the required details.

7Here is a note on type-safety in ajc, from the paper: “the typing of pointcut and advice declarations is founded
on this principle:

1. the body of an advice method must adhere to the advice signature (identical to how a regular methods should
adhere to its signature),

2. the pointcut signature must be stronger than the signature of the join points that it selects, i.e. the selected
join points must adhere to the pointcut signature, and

3. when an advice is bound to a pointcut, its signature must be stronger than that of the pointcut.”

8this is a technical term involving the delegation design pattern and the delegate class.
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To support incremental compilation, ajc associates the current compilation unit

with this aspect-information-annotated AST. The AST is then compiled to produce

class files annotated with AspectJ-specific information. For instance, a before advice

in an aspect is represented as a special method in the class file with a Java attribute

attached, capturing the fact that the method represents a before advice and what

its pointcut was.

The weaver then retrieves join point shadows from the annotated class files. A

join point shadow represents a bounded region of bytecode[36]9. Semantically, it

refers to dynamic points in program execution path, or static points in the source

code. Every join point shadow is defined by a kind, a signature, and a region of

bytecode. The source location of a shadow is given by the SourceFile attribute of

the enclosing class file, and its line number is determined from the LineNumberTable

attribute.

After retrieval of join point shadows, the weaver creates a World – the collection

of all members that have an invasive effect outside their own compilation unit, before

any weaving can take place.

Then, the weaver carries out shadow matching to find places in the source files

and generated bytecode files where the code should be altered. This involves exam-

ining each join point shadow retrieved, to see if it is affected by any of the pieces

of advice defined over the pointcuts. Advice and other advice-like entities, such as

declare constructs, are represented by shadow-munger objects. A shadow munger

performs transformation on join point shadow matched by its contained pointcut.

During the weaving process, the pointcut for each shadow munger is matched against

each join point shadow in the bytecode being processed. In some cases, the weaver

needs additional information for shadow matching. As AspectJ join points are dy-

namic points in the call graph, the matching of shadow may not always be statically

resolvable. When the pointcuts depend on the dynamic state at the join point, the

mismatch is resolved by adding a dynamic test, also called the residue, that captures

the dynamic part of the matching. The classes to be woven into are exposed to the

9There are a few exceptions, however. Initialization shadows, for example, require all constructors within a
method to be inlined in order for their bytecode segment to be correct. In addition, exception-handler pointcuts do
not have a clearly defined end-point. The description of this nature is beyond the scope of this dissertation, and
hence, we do not delve into its details.
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weaver as BCEL[39] representation forms.

Finally, the weaver rewrites the code of the system by inserting calls to the pre-

viously compiled advice methods. The basic weaving mechanism used in AspectJ

is weave-time insertion of invocations of advice, or inlining of advice directly into

base application code, namely at the join point shadow matching the corresponding

pointcut. The weaver performs bytecode weaving using a derivative of BCEL, which

is specially optimised for improving performance of ajc.

Upon completion of weaving, the bytecode is converted back to byte array form

and emitted to .class files. These classes are then loaded into the Java Virtual

Machine (JVM) in the presence of runtime library, aspectjrt.jar. The weaver also

accepts pre-compiled class files, produced by an arbitrary Java source to bytecode

compiler or other tool. It is capable of weaving the compiled aspects into these

compiled bytecode jar files. Also, it can weave advice into classes dynamically as

they are being loaded by the JVM.

2.7 Other Related Work

Others before us have explored the idea modularizing compilers[4, 72]. We proceed

to review other projects related to aspect orientation in compilers that aimed at

improving their modularity. We compare and contrast our design goals as well as

underlying approach with this related work.

2.7.1 AspectBench Compiler

Avgustinov et al. [4] have built an extensible AspectJ compiler, called AspectBench

Compiler (abc), with the basic objective of disentangling the code of the base com-

piler from that of extensions. The base version of abc implements full AspectJ

language, while extensions contain additional language constructs. Extensions can

be of different forms, requiring different levels of changes at different phases. For

instance, name pattern scopes proposed by Colyer and Clement 15 that provides

an abstraction mechanism for name patterns is fairly simple. It requires syntax

extension and the addition of named patterns into the environment. Other exten-

sions such as parametric introductions[33], association aspects[61], and trace-based
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aspects[22] which are based on semantic properties require substantial alterations in

several implementation modules.

The modularity structure of abc is primarily based on modularity of the Polyglot

extensible compiler framework for the front end, the Soot analysis and transforma-

tion framework for the back end, and design patterns for other underlying imple-

mentations. Such implementations are prone to different limitations as discussed in

section 2.3. But the concept of aspect-orientation for modularization still remains

unexplored in abc.

The abc compiler also focuses on providing a software architecture to separate

existing tools from aspect-oriented parts of the compiler. However, given the de-facto

nature of ajc as a workbench for research into extensions of AspectJ and in view of

the explosion of research into new features and analysis, this thesis concentrates on

modularization of ajc itself. It aims to pave a way for easier, cost-effective and more

comprehensive development of other systems – the belief is that modularization effort

in this compiler will carry-forward to compiler implementations in general.

2.7.2 AspectJ Compiler

The core committers of AspectJ compiler development team have introduced three

development aspects into the AspectJ 1.6.4 compiler (ajc):

1. CompilerAdapter.aj, which deals with ordering compiler passes,

2. OwningClassSupportForFieldBindings.aj, which deals with extending field lo-

cators and

3. OwningClassSupportForMethodBinding.aj, which deals with extending method

locators.

They have also used a couple of developmental aspects to facilitate their compiler

development and maintenance tasks. These aspects are available from the CVS

repository at org.aspectj/shadows/org.eclipse.jdt.core/aspectj in the aj v 785 R33x

branch. In built form, they are also in HEAD/org.eclipse.jdt.core/jdtcore-for-aspectj-

src.zip.
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The significance of our work is even more evident when we look at the introduction

of such aspects from the AspectJ development team. Although these concerns are

close to the ones this thesis modularizes; they differ from the aspects that we have

conceived.

2.7.3 Component Based Language Implementation

Wu [72] also investigates the idea of compiler modularization. His PhD dissertation

presents a component-based language development framework with object-oriented

syntax and aspect-oriented semantics. At the syntactic end, it provides a component-

based LR parser that decouples grammar productions, and allows development of

a large language driven by a set of smaller language parsers. It utilizes macros,

templates, design patterns, and component-based software engineering techniques to

separate syntax specifications from semantics in grammar files.

At the semantic end, it claims to encapsulate each semantic phase of a compiler

as an aspect. However, it implements only two trivial compiler concerns – name

analysis and pretty printing of the Java language.

The focus of this thesis is not aspect-orientation of all semantic phases. This

work distinguishes itself from Wu’s work in that it identifies the concerns that cross-

cut the traditional phase-decomposition structure of compilers. We modularize such

cross-cutting concerns by leveraging the capabilities of AOP language mechanisms.

2.8 Summary

The primary motivation for this work is the observation that existing trends in

language implementations focus only on functional decomposition, to manage their

complexity. Our belief is that this decomposition should be at the structural level

too, so that it leads to implementation oriented thinking. Implementation aspects

have had deep effect on the way we design and view programming languages.

Like other complex industrial tools, programming languages can be composed

of relatively specialized parts that can be used as such in many kinds of system-

building tools. This would give us the same benefits that are now regarded as self-

evident in other engineering branches: new production (i.e., programming) systems
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could be rapidly developed for different purposes using existing building blocks, old

systems could be modernized by replacing certain parts with more advanced parts,

and system maintenance would be eased because the system consists of small modules

with clean interfaces.

Among other existing techniques, we examined how AOP constructs help us align

practical implementation with logical decomposition by providing support for man-

aging cross-cutting concerns, and expressing the control flow overlays. Moving on,

we also considered prior efforts towards modularization of language implementa-

tions, and aspect orientation in compiler construction. Last, we showed how this

work differs from these related works.

On the whole, the goal of this thesis is to restructure the core AspectJ compiler

(ajc), implementing an aspect-oriented extension of Java, with the aspect oriented

compiler AspectJ itself so that the concerns are better localized, extensions are com-

posable, and control-flows are comprehensible.
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Chapter 3

Candidates for Modularization

Compilers are programs built from a number of operations that interact with

multiple other operations. In this chapter, we examine seven such operations. To

cover the breadth of compilers’ operations, we first look at three standard functions:

1. canonicalization,

2. compilation sequencing, and

3. register-allocation optimization.

In particular, we focus our discussion on their current implementation strategies and

possibilities of their aspect-orientation for improved modularity. Next, we identify

and investigate aspect-oriented modularization of four novel candidate implementa-

tions in compilers:

1. lazy evaluation of state dependencies,

2. separation of planning and usage of bytecode manipulation tools,

3. peephole optimization, and

4. error handling.

From a modularity perspective in compilers, identification of other similar candidate

concerns and their implementation according to the principle of separation of con-

cerns remains an active area of research. Here, we investigate only a fragment of

this spectrum, which we now proceed to present for the sake of completeness. We

provide an overview of the first two candidates in this chapter. The other two are

the ones we have identified as suitable candidates for implementation. In chapters 4

and 5, we will describe in detail their analyses, implementations, and utilities.
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3.1 Standard Candidates

For the purpose of our discussion, we characterize compiler operations that constitute

a well-established notion of a distinct or separate module in a compilation sequence,

such as canonicalization and register allocation, as standard candidates. In this

category, we also include operations, such as compilation sequencing, whose current

implementation conforms to different design patterns, and would result in improved

modularity when realized using their aspect-oriented counterparts. We proceed to

investigate them here.

3.1.1 Canonicalization

Our first standard candidate is canonicalization of the intermediate-representation

tree.

During compilation of a source program, the semantic analyzer generates Inter-

mediate Representation (IR) trees, which are then translated into assembly or ma-

chine language by the code generator. This conversion of IR trees to assembly code,

however, cannot be done directly because there are certain concepts in the tree repre-

sentation that do not correspond exactly to a machine language. One such difference

is in the operational behavior of different instructions.

For instance, in IR trees, the CJUMP instruction can jump to either of its two

labels. In machine-level conditional jumps, however, the instructions fall through to

the next instruction if the condition evaluates to false.

To resolve such problems, resulting from mismatches between the IR code and

machine code, compilers re-create the IR tree by moving CALL1 nodes to the top level

so that their parents are either EXP() or MOVE(TEMP t, ...), and by replacing all

ESEQ2 and SEQ nodes with their equivalent forms. This process is called canonical-

ization. Snippet of Java code that creates canonical trees is shown in Figures 3.1

1The issue with CALLs is that multiple CALL nodes within a single expression could cause problems with call-
related register usage, when mapped to lower-level code. For instance, nested calls, such as BINOP(PLUS, CALL(...),
CALL(...)), will cause interference between register arguments and returned results. The CALL node is implemented
in such a way that each function returns its result in the same dedicated return-value register TEMP(RV). Thus, in
an expression of such form, it is likely that the second call will overwrite the RV register before the PLUS operation
executes.

2The issue with ESEQs is that they impose strict order of evaluation by means of statements with side-effects.
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and 3.2.

public interface ICanonv i s i t o r {
2 public EXP v i s i t (EXP expNode ) ;

public STM v i s i t (STM stmNode ) ;
4 public FUN v i s i t (Fun funNode ) ;

. . .
6 . . .

}

Listing 3.1: Interface for CanonVisitor class.

pub l i c class CanonVisitor implements ICanonv i s i t o r {
2 . . .

. . .
4 public EXP v i s i t (CALL cal lNode ) {

EXP args = cal lNode . a r g s . accept ( this ) ;
6 STM s1 = getStm ( args ) ;

TEMP t new = new TEMP( ) ;
8 STM s2 = new MOVE( t new , new CALL( cal lNode . getFun ( ) ,

(EXPList ) getExp ( args ) ) ) ;
10 return new ESEQ( mergetStms ( s1 , s2 ) , t new ) ;

}
12 public EXP v i s i t (ESEQ eseqNode ) {

STM s1 = eseqNode . stmt . accept ( this ) ;
14 EXP e1 = eseqNode . exp . accept ( this ) ;

STM s2 = mergeStms ( s1 , getStm ( e1 ) ) ;
16 i f ( s2 != null )

return new ESEQ( s2 , getExp ( e1 ) ) ;
18 return eseqNode ;

}
20 . . .

. . .
22 public EXP v i s i t (EXP expNode ) {

. . .
24 . . .

}
26 }

Listing 3.2: CanonVisitor class.

In object-oriented paradigm, canonicalization is usually implemented as a visitor

program over an IR tree. To handle CALL nodes, the visitor introduces a new tem-

porary register, temp, to save the return value; and replaces the CALL node with an

ESEQ node. The re-writing rule is implemented as follows:

CALL(fun, args) is replaced by

ESEQ(MOVE(TEMP t new, CALL(fun, args), TEMP t new)

The related piece of code is shown in Listing 3.2(b) (lines 4 – 11).

Similarly, to eliminate ESEQ nodes, the visitor program visits every expression

node, extracts the statements out, and forwards them to an upper level, as shown

in Listing 3.2 (lines 12 – 19). This process continues until the ESEQ nodes can be

replaced by SEQ nodes. For instance, ESEQ(S1, ESEQ(S2,e)) can be replaced by

ESEQ(SEQ(S1,S2),e).
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Although the use of design patterns, visitor in this case, brings several benefits,

it also hard codes the underlying system and makes it difficult to express changes in

the code, as we discussed earlier in subsection 2.3.2.

Aspect-oriented implementation of this pattern provides better opportunity for

reusing and evolving it. This support comes from the use of inter-type declarations

for inserting visitor methods into an existing visitor pattern, as we saw in subsec-

tion 2.3.2.

3.1.2 Register Allocation Optimization

Our second example of the standard candidate is optimization of register allocation.

Local variables of methods, intermediate results of expression evaluations, and

other similar values are usually stored in registers, rather than stack frames, to

improve execution performance. Register access is faster, because instructions can

directly use values stored in registers during computation[3]. Memory access, how-

ever, is slower because it involves extra memory cycles to execute load and store

instructions, that are used to fetch values from the stack.

Registers are valuable resources, but they are available only in limited amounts.

Usually, a machine has only one set of registers, which are used by several procedures

and functions. Therefore, register allocation, the process of deciding which values

to store in which registers over what period of program execution, entails careful

planning and usage.

For instance, consider a function f, storing its local variable in a register r, calls

procedure g, which also uses r to hold its temporaries. To avoid register-usage conflict

in such a case, r must be stored into a stack frame, before g uses it; and, restored

from the frame after g is done with the register. This store-and-fetch mechanism can

be implemented either by f, the caller, or by g, the callee. Register r is called caller-

save register if the caller implements the store-and-fetch mechanism, and callee-save

register if the callee implements it.

Effective allocation of registers for locals and temporaries can minimize the num-

ber of store-and-fetch situations, or even avoid them entirely in some cases. For

instance, if f knows that the value of a variable x is not needed after the call, it may
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compute x in a caller-save register, but not save it when calling g. Conversely, if f

has a local variable i that is needed before and after several function calls, it may

save ri just once (upon entry to f); and put i in some callee-save register ri, and

fetch it back just once (before returning from f).

Closer examination of this behavior reveals that there is an inherent publish-

subscribe relation between the callers and the callees. Such a relationship can be

represented using the subject-observer pattern. With this pattern, the calling func-

tion does not actually need to store all its arguments into its stack frame, to make

room for those of the callee. When the callee function must write its arguments

to the frame, the callee can notify its observer, which is the caller in this case. To

receive such notifications, the caller can subscribe to the callee. Upon receiving a

notice from the callee, the caller will alter its storage to save appropriate variables

into stack frame, and to create room for callee’s values in registers.

Burger et al. [10] have already proven this lazy-save register-allocation idea to be

efficient. They investigate and implement such an optimization from a performance-

improvement perspective. Our perspective is different– we focus on modularizing

this implementation, so that we can isolate the optimization-related pieces of code

from the compiler and implement them into a distinct module of its own. Specifically,

aspect-oriented subject-observer pattern implementation would provide us additional

benefits that we discussed in chapter 2. However, we chose not to implement this

candidate as it is already considered for implementation.

3.1.3 Compilation Sequencing

Our third and final example of a standard candidate for aspect-oriented modulariza-

tion in compilers is sequencing of compilation events.

Generation of a target program by a compiler involves traversals, called passes,

over the source program or its internal representation – the abstract syntax tree

(AST). Most modern compilers carry out multi-pass compilation – multiple traversals

of AST to carry out different analyses. In addition to phase analyzers, such compilers

consist of a compiler-driver or a compilation-sequence manager, which is responsible

for invoking these phase analyzers in a desired order. It observes each phase in a
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compilation sequence to decide about next phase invocation.

For instance, if the source program lacks a proper syntax structure, the parser

generates error reports instead of constructing an AST. As a result of failed parsing,

semantic analysis should not occur and similarly, other following phases should not

occur either.

Intuitively, there is an inherent event-notify relationship between the compiler

driver and different phases. Correct functioning of the compiler-driver depends on

event notifications from a currently executing phase. If one phase executes success-

fully, the driver calls the next phase in the sequence, else it reports an error and stops

further compilation. Such a one-to-many dependency relation between the driver and

phases can be realized with the subject-observer pattern. As discussed in chapter 2,

aspect-oriented implementation of this pattern, provides increased opportunities for

code reuse, and better modularity.

The AspectJ compiler incorporates such an aspect, CompilerAdapter, that drives

different compiler events. The interface and the aspect itself are shown in Listings

3.3, 3.4, and 3.5.

/∗∗ In te r face for CompilerAdapterAspect ∗/
2 public interface ICompilerAdapter {

void a f t e rD i e tPa r s i ng ( Compi lat ionUnitDec larat ion [ ] un i t s ) ;
4 void beforeCompi l ing ( ICompi lat ionUnit [ ] sourceUni t s ) ;

void a f te rCompi l ing ( Compi lat ionUnitDec larat ion [ ] un i t s ) ;
6 . . .

. . .
8 void be foreGenerat ing ( Compi lat ionUnitDec larat ion uni t ) ;

void a f t e rGenera t ing ( Compi lat ionUnitDec larat ion uni t ) ;
10 }

Listing 3.3: Interface for CompilerAdapter aspect from ajc.

It does not incorporate aspect-oriented subject-observer pattern. It simply relies

on the capabilities of the join point model for this. The sequencing and dependen-

cies among phases of a compiler are realized by using the control-flow-expressivity

capability of pointcuts and ordering among phases is realized through weaving rules.

The weaving rules are achieved through different kinds of advices, such as before,

after, after returning, and after throwing.

The ICompilerAdapter interface shows prototypes of methods that define the

actions to trigger at various strategic points in compilation. Examples include events

before and after diet parsing, compilation, type-analysis and -resolution, and code
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1 /∗∗
∗ This aspect implements the necessary hooks around the JDT compiler

3 ∗ to a l low AspectJ to do i t s job
∗/

5 public privileged aspect CompilerAdapter {
/∗∗ Defaul t Adapter Factory ∗/

7 private stat ic ICompilerAdapterFactory adapterFactory =
new ICompilerAdapterFactory ( ) {

9 public ICompilerAdapter getAdapter ( Compiler forCompi ler ) {
return new DefaultCompilerAdapter ( forCompi ler ) ;

11 }} ;
public stat ic void setCompilerAdapterFactory ( ICompilerAdapterFactory f a c t o ry ) {

13 adapterFactory = fa c t o ry ;
}

15 /∗∗ Adapter to manage compilat ion event ∗/
private ICompilerAdapter compilerAdapter ;

17 pointcut d i e tPar s ing ( Compiler compi le r ) :
execution (void Compiler . beginToCompile ( ICompi lat ionUnit [ ] ) )

19 && this ( compi le r ) ;
pointcut compi l ing ( Compiler compiler , ICompi lat ionUnit [ ] sourceUni t s ) :

21 execution (∗ Compiler . compile ( . . ) )
&& args ( sourceUni t s )

23 && this ( compi le r ) ;
pointcut genera t ing ( Compi lat ionUnitDec larat ion un i t ) :

25 ca l l (∗ Compi lat ionUnitDec larat ion . generateCode ( . . ) )
&& target ( un i t )

27 && within ( Compiler ) ;
. . .

29 . . .

Listing 3.4: Pointcuts and related code from CompilerAdapter aspect in ajc.

generation. Some of these are shown in Listing 3.3:

1. afterDietParsing(...),

2. beforeCompiling(...),

3. afterCompiling(...),

4. beforeGenerating(...), and

5. afterGenerating(...).

The strategic points where the method invocations must occur are described by

different kinds of advices, such as before, after, and after() returning. For

instance, as shown in Listing 3.5, the body of after advice (line 22) contains a call

to afterDietParsing(...) method on the compilerAdapter to handle postParse

activities, discussed in subsection 2.6.1. Similarly, before (lines 42 -44) and after

(lines 45 - 47) advices contain calls to pre- and post-code-generation phase of the

compiler.

We chose not to implement any of these three candidates because one of them,

compilation sequencing, is previously implemented, and the remaining two are fairly
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after ( Compiler compi ler ) returning ( ) : d i e tPar s ing ( compi le r ){
2 compilerAdapter . a f t e rD i e tPa r s i ng ( compi le r . unitsToProcess ) ;

}
4 before ( Compiler compiler , ICompi lat ionUnit [ ] sourceUni t s ) :

compi l ing ( compiler , sourceUni t s ) {
6 compilerAdapter = adapterFactory . getAdapter ( compi le r ) ;

compilerAdapter . be foreCompi l ing ( sourceUni t s ) ;
8 }

after ( Compiler compi ler ) returning : compi l ing ( compiler , ICompi lat ionUnit [ ] ) {
10 try {

compilerAdapter . a f te rCompi l ing ( compi le r . unitsToProcess ) ;
12 } catch ( Exception e ) {

compi ler . handleException ( e ) ;
14 throw e ; // rethrow

} f ina l ly {
16 compi ler . r e s e t ( ) ;

this . compilerAdapter = null ;
18 }

}
20 . . .

. . .
22 before ( Compi lat ionUnitDec larat ion uni t ) : g ene ra t ing ( un i t ) {

compilerAdapter . be foreGenerat ing ( un i t ) ;
24 }

after ( Compi lat ionUnitDec larat ion uni t ) returning : g ene ra t ing ( un i t ) {
26 compilerAdapter . a f t e rGene ra t ing ( un i t ) ;

}
28 }

Listing 3.5: Advices from CompilerAdapter aspect in ajc.

straight-forward counterparts of different design patterns. Related prior work de-

scribes aspect-oriented implementation of such patterns [34]. In the next section, we

will look at four novel candidates that we consider for implementation.

3.2 Novel Candidates

Although established compiler designs decompose the bulk of a compiler into dif-

ferent operations and try implementing them in distinct modules, there still remain

other operations that are not yet properly isolated from others. In this thesis, we

refer to such operations as novel candidates, and focus on their aspect-oriented mod-

ularization into separate modules of their own.

3.2.1 Lazy Evaluation of State Dependencies

The first novel candidate that we consider is lazy evaluation of state dependencies.

Traditionally, compilers have been internally organized into separate phases that

are invoked in a fixed, predetermined order. We can improve this organization with a

demand-driven ordering on the activation order of the phases. This flexibility would

free the compiler writers from considering the phase activation order as integral to

the design. The ordering of the phases is, however, constrained by two different kinds
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of dependencies, namely: phase dependencies, which restrict how an input program

can be passed through successive phases and compilation-unit3 dependencies, which

restrict how different parts of the input program can be passed through individual

phases[44]. Lets look at examples of each of these.

The intermediate-code generation phase deals with translating abstract syntax

into IR code. The IR code can be generated either along with or after completion of

type-checking. In either case, intermediate code generation will take place only if the

code is syntactically and semantically correct. Therefore, IR code generation depends

on type-checking and context-dependent analysis. Likewise, when operations in an

input program misuse their operands, the input program contains a type error. In

such cases, the semantic analyzer should generate a type error and stop further

steps of compilation. Thus, semantic analyzer depends on type checker and phases

following type checking depend on the semantic analyzer.

Now, lets consider compilation-unit dependencies. A compiler performs type-

checking on an AST. Therefore, the decision as to whether type-checking on a com-

pilation unit can occur depends on whether all the required and dependent AST

nodes have been generated or not. If the compiler tries to type-check an AST node,

which depends on other AST nodes, it has to wait until the dependee node is avail-

able.

For a better understanding of the problem, consider the snippet of code written

in SML programming language in Listing 3.6. This piece of code deals with type-

checking the abstract syntax of an if-expression and also calls a method to generate

its corresponding IR code.

The first three declarations(lines 4-6) in the let declaration sequence determine

the types of test, then and else expressions that constitute an if-expression.

The function trExp returns the intermediate representation of the entire expression,

in addition to its type. The checkIfInt() function in the let-body tests whether

the type of test-expression in the if-expression is of type integer4. Similarly, the

checkIfEqual() function checks for the equality of the types of then and else

3A compilation unit refers to an AST node for an entire source file.
4Here, we assume that booleans are represented as integers.
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l e t
2 fun trExp (Absyn . IfExp{ testExp , thenExp , e lseExp=SOME elseExp , pos }) =

l e t
4 val expTyT as {exp=expTest , ty=typeOftes t } = trExp testExp

val expTyN as {exp=expThen , ty=typeOfthen} = trExp thenExp
6 val expTyE as {exp=expElse , ty=typeOfe l s e } = trExp elseExp

in
8 ( ch e ck I f I n t ( typeOftest , pos , " IF test " )

; checkI fEqua l ( typeOfthen , typeOfe l se , pos , " IF consequents " )
10 ; { exp = Trans late . t r an l s a t e I fThenE l s e ( expTest , expThen , expElse )

, ty = morePreciseTy ( typeOfthen , typeOfe l s e ) } )
12 end

. . .
14 . . .

in
16 . . .

. . .
18 end

Listing 3.6: Type checking and intermediate-code generation for an if-expression.

expressions.

If either of these tests fails, the semantic analyzer reports errors and looks for other

errors in this phase, but stops execution of other phases. If the tests pass, it invokes

translateIfThenElse() function, which produces IR code corresponding to this

if-expression. Here, we see that type checking and IR code generation are coupled

into a single pass. A benefit of this approach is reduced number of compiler passes.

A disadvantage is that two semantically different phases have been coupled together.

Moreover, when IR code generation is done hand-in-hand with type checking, IR-

code generation will occur for all AST nodes up to the point of type error. Clearly,

there is extra work involved in generating IR code that will be discarded

Decoupling these phases would result in significant overhead, because the compiler

must preserve the type, and value information of each expression or declaration

across these phases. But there is an advantage to this approach. When IR code

generation is done separately from type-checking, the compiler can issue an error

message and stop further type-checking and other operations from upcoming phases.

This prevents generation of intermediate code that will eventually be discarded.

As we see, there are distinct trade-offs between these two approaches to imple-

mentation of the semantic analyzer. A technique that aids us in overcoming the

associated trade-offs is lazy evaluation of the state dependencies. Lazy evaluation

allows compiler writers to focus on top-level logical structures of the compiler by

avoiding the need to focus on partitioning them into separate passes[20].

On a different note, lazy calculation of state dependencies is beneficial from the
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perspective of parallelization opportunities as well. In a strict compilation sequence,

phase invocations on input programs occur in a fixed manner. Any subsequent phase

in compilation cannot be invoked on parts of AST unless all compilation units have

passed through the current phase. This is true even if the previous phase has com-

pleted its processing on certain compilation units. As a result, computing resources,

such as processor and memory cycles, remain idle, for lack of processing tasks. Es-

sentially, the processors must wait until the previous stage of compilation reaches

a synchronization point, where the entire compilation units are finished processing

through the phase in execution. This is shown in Figure 3.1.

Compilation Unit 1 

Compilation Unit 2 

Compilation Unit 3 

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 

Synchronization Barriers 

Figure 3.1: Current parallelization in compilation sequence.

Such a limitation is minimized when phase invocations occur in a lazy manner.

Under lazy scheme, phase invocations on compilation units and their constituent

nodes occur in a demand-driven fashion. This allows one compilation unit to proceed

to next phase of processing, without having to wait for completion of processing of

other compilation units. Noticeably, sometimes a compilation unit might have to

wait for completion of other compilation-unit processing at some synchronization

point, owing to its dependency upon other compilation units. Nevertheless, there is

now increased opportunity for parallelization of phase processing because different

cores or processors can work upon different compilation units, or even their member

nodes. This is shown in Figure 3.2.

Using aspect-orientation to dovetail lazy evaluation of type checking with different

phases helps modularize the implementation of this lazy state-calculation, which

would otherwise have been scattered and tangled across different methods in the

AST nodes.
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Compilation Unit 1 

Compilation Unit 2 

Compilation Unit 3 

Fused Passes 1 Fused Passes 2 

Synchronization Barriers 

Figure 3.2: Desired parallelization in compilation sequence.

3.2.2 Peephole Optimization

Our second example of novel candidate for modularization is peephole optimization.

An important phase in compiler construction is optimization. A commonly-used

optimization technique is peephole optimization(PPO)[1, 52]. It involves iterating

over a small set of generated instructions, called the window or peephole, to identify

redundancies and eliminate or merge them with a semantically-equivalent instruc-

tions.

Usually, PPO is done on machine-specific code. One downside of this is loss of

portability. Less commonly, peephole optimization can be applied to intermediate

code as well. However, such an implementation entails difficulty in modularizing

this concern as a pluggable construct that can be integrated with phases before and

after optimization. Listing 3.7 shows a pseudo aspect to carry out PPO. We defer

discussion of real code until next chapter.

aspect DemoOptimizer {
2 pointcut ppoOptimization (Exp AST) :

within ( Compiler .∗ ) &&
4 ca l l (∗ . iCodeGen (AST) ) &&

args (AST) ;
6

optimIRCode around (Exp AST) : ppoOptimization {
8 Code IRCode = iCodeGen (AST) ;

return ( PeepHoleOptimizer ( IRCode ) ) ;
10 }

}

Listing 3.7: Pseudo aspect for PPO.

In this example, we see that the pointcut ppoOptimization(Exp AST) matches

the join points that involve any call to iCodeGen() method that takes an argument

of type Exp, and is within the lexical scope of any class in the Compiler package.

Here, iCodeGen() method refers to intermediate-code generation phase of compiler
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construction. The advice code specifies that PPO behavior must be woven at the

matching join point specified by the pointcut. The AST required for intermediate

code generation and optimization is captured by the args(AST) pointcut.

If one wished to perform PPO on the machine code, the only predicate in De-

moOptimizer aspect that needs updates is line 4. This involves replacing the point-

cut call(*.iCodeGen(AST))with a new pointcut call(*.machineCodeGen(IRTree))

describing our new places of interest.

Similarly, if the underlying implementation of the PPO is modified, this aspect

would still continue to work; now it will weave additional behavior at the new places.

This is yet another benefit of using aspects. If the language developer wished to

analyze the compiler with or without PPO, he can do so by simply enabling or

disabling this aspect, because it does not depend on any other implementations

within the compiler, nor are any modules dependent on this aspect.

As a result, we see how aspects and the aspect components will fit nicely with the

conceptual needs of the compilers. This validates aspect-oriented language as the

right choice to meet our goals in restructuring compilers. We will more completely

elaborate this example in chapter 4, where we provide details regarding implemen-

tation, evaluation and utility of a peephole optimizer, modularized as an aspect.

3.2.3 Separation of BCEL from Weaver

Our third candidate is using aspect-orientation to separate the planning and the use

of Byte Code Engineering Library (BCEL)[39] in the back end of ajc.

Currently, ajc is built against its own optimized version of BCEL, with some bug-

fixes and upgrades to support Java 5 and later versions. AspectJ’s weaver has an

interface layer into which BCEL implementations are plugged. This interface is rife

with several BCEL dependencies. This precludes using the available weaver interface

to investigate byte-code manipulation and related opportunities using alternate byte-

code manipulation tools.

As it stands now, BCEL policies are entangled with their actual use on the weaver

side, which results in an unclear separation between the BCEL and the weaver. In

light of this problem, our goal of modularization would be to make the boundary

59



between BCEL and the weaver clearer and obtain a more reusable architecture by

separating out the BCEL policies from usages.

A preliminary design analysis, however, shows that this problem is mainly the

result of poor design and implementation. The interface could be clarified through

simple refactorings, as described in Fowler [28]. Implementation of this concern

would be a contribution to the user community, because it provides opportunities

to use alternate byte code engineering tools, such as ASM[8]. From the perspective

of research contribution however, this task lacks novelty. Hence, we decided against

implementing this aspect candidate. Other factors contributing to this decision are

summarized in Table 3.1, in our discussion of Candidate Selection, in section 3.3.

3.2.4 Error Handling

Our fourth, and final novel candidate for aspect-oriented modularization is error-

handling, the process of defining how a compiler should behave when it encounters

errors in an input program.

Currently, error-handling concern is tightly coupled to many different phases of

a compiler, and is interleaved with compiler’s underlying program logic in a com-

plex manner. For example, error handling is integral to type and value evaluation,

symbol table management, pretty printing, and other similar operations. A common

approach to realizing these operations in object-oriented domain is as separate meth-

ods in different kinds of nodes. Typical examples of nodes are arithmetic-expression

nodes such as sum and product nodes, initializer-expressions nodes such as variable

and class initializers, and declaration nodes such as field and method declarations.

Thus, error-handling implementation is scattered across different units of modularity

(methods and classes) and tangled with other compiler operations.

Further, error-related control dependencies are not explicitly defined and local-

ized into distinct modular units. Information regarding the program-execution path,

source-code locations, and significant values about error-raising and -handling en-

tities are non-intuitive: they are hidden within the static and dynamic compiler-

implementation structure.

In this thesis, we consider and undertake the task of improving this error-handling
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structure in compilers as another example of aspect structure of compilers. To meet

this goal, we modularize many error handlers discovered in different phases of ajc

into distinct units. This facilitates comprehension, modification and improvement of

error-reporting and -patching processes. Details regarding implementation, evalua-

tion and utility of modular error handling follow in chapter 5.

3.3 Candidate Selection

A clear and focused research candidate helps us develop solutions with appropriate

designs, analyses and evaluation techniques. Therefore, before proceeding on towards

the implementation details, we briefly describe the criteria we applied while selecting

our candidates for implementation. We will survey four different novel operations

and then use them to provide insight into why some of our choices have been good,

and why others may not be reconsidered.

Table 3.1 summarizes assessment of four different novel candidates for implemen-

tation given in section 3.2 based on these criteria5.

Table 3.1: Ranking of candidates based on different criteria.

Criterion
Candidates

Separation of BCEL Lazy Evaluation PPO Error Handling

Novelty -

Interest

Time Feasibility -

Research Contribution -

User Contribution

Total Weightage (3) (4) (5) (5)

The first criterion – novelty – identifies the newness of an idea. An idea is consid-

ered new if it is has not yet been proposed, or has not been implemented even if it

has already been proposed. The second criterion – interest – refers to our personal

interest on implementation of an idea. The third criterion – time feasibility – refers

to how feasible the implementation of a candidate will be within the given time

frame for a master’s thesis. Similarly, the fourth criterion – research contribution

5These are borrowed from FINER criteria defined by Thabane and Ye [66]. We modified one criterion – ethics–
because it is not as important for computer science as for anesthesiology. Further, we added one more criterion -
User contribution, to suit our needs.
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– identifies if a candidate-idea contributes to the existing research in related field

by solving a problem, or by improving certain features. The final criterion – user

contribution – refers to the usefulness of the idea to the general user-community.

From a pilot implementation, we found that separating planning and use of BCEL

lacked novelty from research perspective, despite being novel from user perspective.

It is clear from talks in the user and development community that this work would

prove significant for the user community by providing increased opportunities for

testing alternate byte-code manipulation tools besides BCEL. It does not, however,

involve fundamentally challenging avenues for research in modularization. Hence,

we dropped this candidate despite being interested in it.

We decided against implementation of lazy evaluation of state dependencies for

reasons of greater time-requirements, and the need for more comprehensive analysis

of ajc.

The remaining two candidates, peephole optimization and error handling, ranked

well in all our decision criteria. Hence, we decided to implement them to support

our thesis about aspect structure of compilers.

3.4 Summary

In this chapter, we examined seven different compiler operations whose implementa-

tions are scattered and tangled across various units of modularity. We also estimated

that their aspect-oriented implementation would serve to improve the modular struc-

ture of compilers. Further, by using well-founded decision criteria[66], we performed

a strategic assessment of these clinical modularization opportunities, which helped

us select research candidates for demonstrating the modularization possible in com-

pilers.

In the next two chapters, we examine our two candidates, peephole optimization

and error handling, in detail, and show the benefits of aspect-oriented compiler

design.
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Chapter 4

Peephole Optimization

Modern compilers perform optimizations to improve the execution-time and -

space requirements of generated code. In this chapter, we discuss from modularity

perspective, the implementation of a common optimizer, a peephole optimizer [1, 52,

53, 65] at the bytecode level. This provides an example of separating an entire

compiler-pass into a distinct pluggable aspect.

We begin this chapter with an introduction to peephole optimization, followed

by our design goals and contributions from its implementation. Next, we describe

the architecture of intermediate code in ajc, and also discuss its code-generation

strategy. Then we describe in detail a table-driven peephole optimizer that improves

this intermediate code. Next, we present performance results for our optimizer.

Finally, we describe the related works and close with a summary of the chapter.

4.1 Introduction

Code generated by compilers is rarely in optimal form. Even if the code generated for

each source statement is optimal in isolation, it is likely that the optimal fragments

become suboptimal when juxtaposed, for example when creating a method body.

The output code is, therefore, amenable to further improvements so that it executes

faster, or takes less space, or both. This improvement is achieved by means of pro-

gram transformations called optimizations. Compilers that employ such optimizing

transformations are called optimizing compilers[2, 32, 64].

In fact, separating optimization into a distinct module makes writing a compiler

easier: one can write a näıve code-generator and leave the optimization of the poor-

quality code-fragments for the later phase. This simplifies the code-generator since

it requires little or no context, without discarding optimizations that depend on only
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a small amount of context. Unfortunately, in modern compilers, optimization is an

integrated phase. The focus of this chapter is on modularizing compiler passes as

pluggable constructs, using peephole optimization as a working example.

4.1.1 Java Virtual Machine Basics

Before investigating peephole optimization, motivation for its implementation, and

related design goals, we present some background information on the Java Virtual

Machine (JVM) that is fundamental to understanding the further discussions.

All Java and AspectJ programs are compiled into class files that contain byte-

code, the machine language of the JVM. Bytecode can be executed by interpretation,

Just-In-Time (JIT) compilation, or other technique chosen by the designer of a par-

ticular JVM. Each instruction consists of a one-byte opcode followed by zero or more

operands. The opcode indicates the action to take, while any other information

required for bytecode execution is encoded in the operands following the opcode.

All computation in the JVM centers on the stack. Because the JVM has no

registers for storing values, everything must be pushed onto the stack before it can

be used during computation. Bytecode instructions, therefore, operate primarily on

the stack. Table 4.1 shows a list of bytecode mnemonics that appear in the discussion

of this thesis.

For each mnemonic-opcode shown, we describe the operation that it represents,

and also show how the operand stack changes as result of execution of the operation

indicated. For instance, consider the first opcode SWAP. It represents the operation of

swapping the top two values on the stack. Before execution of this instruction, stack

contained value1 at the top and value2 immediately below it. After the bytecode

execution, the order of operands in the stack has changed, and the resulting new

order is shown after the =⇒ symbol: value2 is at the top and value1 immediately

below it.

4.1.2 Peephole Optimization

Given this understanding of bytecode form, the manner in which the JVM handles

bytecodes, and the mnemonics used to represent different bytecode instructions, we
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Table 4.1: JVM Instructions.

Mnemonic Operation Operand Stack

SWAP Swap the top two operand stack values ..., value2, value1 =⇒ ..., value1, value2

DUP Duplicate the top operand stack value ..., value =⇒ ..., value , value

ILOAD A Load an int from local variable A onto stack ... =⇒ ..., value

POP Pop the top operand stack value ..., value =⇒ ...

ISTORE A Store an int from stack into local variable A ..., value =⇒ ...

IRETURN Return int from method ..., value =⇒ [empty]

INEG Negate int ..., value =⇒ ..., result

IADD Add int ..., value1, value2 =⇒ ..., result

ISUB Subtract int ..., value1, value2 =⇒ ..., result

LDC Load a constant onto stack ... =⇒ ..., value

IF ICMPEQ Branch if int comparison value1 == value2 true ..., value1, value2 =⇒ ...

IF ICMPNE Branch if int comparison value1 ! = value2 true ..., value1, value2 =⇒ ...

IF ICMPLT Branch if int comparison value1 < value2 true ..., value1, value2 =⇒ ...

IF ICMPGE Branch if int comparison value1 >= value2 true ..., value1, value2 =⇒ ...

IF ICMPGT Branch if int comparison value1 > value2 true ..., value1, value2 =⇒ ...

DUP X1
Duplicate the top operand stack value ..., value2, value1 =⇒
and insert two values down ..., value1 , value2, value1

proceed to look at peephole optimization in some depth. Peephole optimization

(PPO) is a simple but effective technique for locally improving the generated code.

To improve the performance of the program, a peephole optimizer[65]:

• examines sequences of instructions in a small window of code, called the peep-

hole, and

• replaces inefficient sequences of instructions with more efficient but semantically

equivalent sequences.

It applies a set of pattern-matching rules to the code, in order to identify inefficient

sequences of instructions. For instance, consider the sample replacement-suite shown

in Table 4.2.

The two consecutive SWAP instructions, shown in line (1), simply swap the top two

words of the stack twice. Essentially, this leaves the contents of the stack unchanged.

A SWAP followed by a SWAP can, therefore, be safely eliminated. Accordingly, the

corresponding optimized replacement for this pattern is empty.

The second example shows that duplicating the top word of the stack onto the

top of the stack, and then swapping their contents can be optimized by simply
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Table 4.2: Sample replacement suite for peephole patterns.
Pattern Replacement

(1) SWAP SWAP =⇒ [empty]
(2) DUP SWAP =⇒ DUP
(3) INEG IADD =⇒ ISUB
(4) STORE A STORE A =⇒ POP STORE A
(5) ICONST 0 IADD =⇒ [empty]
(6) ILOAD A ISTORE A =⇒ [empty]

getting rid of the SWAP instruction. Essentially, a SWAP following a DUP is unnecessary,

for it means swapping two equal values. Accordingly, the corresponding optimized

replacement for this pattern contains only the DUP instruction.

The third example shows that negating the sign of the integer on the top of the

stack followed by an addition operation can be replaced with a subtraction operation.

Here, it is worth noting that we are replacing a set of instructions with a single

instruction that is less costly.

Similarly, the fourth pattern shows that a sequence of STORE – STORE to the

same location, A in this case, can be replaced with a sequence of POP and STORE

instructions.

For brevity, we do not delve into the details of other patterns and their opti-

mized replacements. At this point, this information suffices for an understanding

of the way in which peephole optimization is performed. The approach is to take

a list of instructions and slide through the window consisting of a small number of

instructions until the end of the list and replace them with instructions that lead to

improved performance in terms of time and space.

As simple as it is, peephole optimization is effective too. As instructions are

replaced in the peephole window, new opportunities for further optimizations arise.

For instance, consider the following sequence of bytecodes. For instance, consider

the following bytecode sequence for the statement: A = A + 0;

The first column shows the original sequence of bytecodes. The instructions (2)

and (3) push a constant 0 to the stack and then add it to the top of the stack. This

computation does not change the value of the stack, hence, the instruction pair (2)

and (3) can be safely eliminated during first round of optimization; the resulting
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Original 1st Opt. 2nd Opt.

(1) ILOAD A ILOAD A [empty ]
(2) ICONST 0 [empty ]
(3) IADD [empty ]
(4) ISTORE A ISTORE A [empty ]

code is shown in the second column. This code is again amenable to peephole

optimization. Load and store to the same location can be safely eliminated during

second phase of optimization because it leaves the operand stack unchanged. The

resulting bytecode is thus empty, since all the instructions have now been eliminated.

4.2 Motivation and Design Goals

So far, we looked at the basics leading to the discussion of PPO. In this section,

we describe our motivation for implementing a peephole optimizer as an illustrative

example for demonstrating the aspect structure of compilers. We end this section

with a list of design goals pertinent to our implementation, along with the resulting

contributions.

An important question that arises regarding PPO is about the phase where it

should be incorporated. Conventionally, it is carried out at the machine-code level

because it provides better opportunities for machine-dependent optimizations. An-

other possibility is to use it at the intermediate-code level. Because intermediate

code may not represent all machine-specific details, it offers fewer opportunities for

optimization. For instance, some machines have special-purpose instructions, such

as INC1, which are cheaper than their more general counterparts like ADD. Optimiza-

tion opportunities dependent on such machine-specific details are lost when it is

performed at the intermediate-code level, unless these details are also encoded in the

intermediate code.

We perform this optimization at intermediate code when compiling AspectJ source

to machine code. This decision is motivated by three major findings:

1INC is an assembly instruction that increments the contents of the source register. It is considered to be faster
than ADD, which adds the contents of a source register to that of the destination and stores it in the destination
register.
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1. First, our candidate compiler, ajc, generates intermediate code at many differ-

ent places across several modules. To improve the performance of generated-

code, ajc applies some pattern-replacements, which are locally hardwired into

the places of interest within the compiler source. Identifying and explicitly ex-

pressing such sites by means of AspectJ’s join point model serves to make the

aspect structure of the compiler more explicit. This work will emphasize local-

ity in design of compilers by more explicitly encapsulating PPO-concern as a

separate pluggable module. The resulting benefits are flexibility in testing and

configuring optimization without the need for hacking its internals.

2. Second, decreased optimization opportunities are not a big issue in the context

of ajc, because the intermediate code of ajc is the bytecode. The benefit comes

from opportunities to use semantic knowledge pertinent to bytecodes, such as

instruction equivalence, for improving the intermediate code. Consequently,

optimization can be applied to even special-purpose instructions in the inter-

mediate code, whose bytecode equivalents contain several components, because

these components are visible in the intermediate representation as well.

3. Third and final reason is the desire to emit compact blocks of bytecode. Cur-

rently, the AspectJ compiler throws an exception if a method becomes too large

during weaving, and does not fit into the maximum method code size, less than

65536 bytes. In fact, this is a well-documented limitation of Java. One way

of reducing its occurrence is to pack an optimized version of method body.

Peephole optimization at intermediate level is one opportune way to do this.

In light of these problems, the design goals for our implementation of peephole

optimization are:

1. Explicit control-flow information

Much legacy code for PPO is written in high-level languages containing se-

quences, loops, branches, methods, and classes. Sequences describe the or-

dering in which instructions execute. Loops repeatedly execute a sequence of

instructions in their bodies until some conditions are met. Branches describe

different instructions to execute depending on their test-conditions. Methods
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collect a sequence of related operations into a single abstract higher-level oper-

ation. Classes group related operations and their associated attributes into a

single, even higher-level unit.

Essentially, each of these constructs abstract some control-flow information. For

instance, every instruction in a sequence is control dependent on execution of

its preceding instruction2. Similarly, every instruction after a branch is control

dependent on the branch and must wait for the branch to execute before it can

execute.

Although control constructs such as sequences, loops and branches are consid-

ered to abstract some kind of control-flow information, others such as methods

give great power but can obscure other significant properties of the program,

such as thread safety. We believe that explicitly reifying information related to

sites, contexts and ordering of method invocations facilitates expressing much

higher-level control-flow abstractions than those expressed by sequences, loops,

branches and method implementations.

For instance, lets consider a method performing type munging in ajc. An ini-

tial investigation of the ajc source shows that there is a call to munge(...)

method in the body of weaveInterTypeDeclarations(...) method, which is

a member of AjLookupEnvironment type. However, it is not clear whether this

is the only source file containing code related to type munging. Further naviga-

tion and inspection of ajc reveals that the munge(...) method that deals with

type munging is invoked in eight different source files scattered across two dif-

ferent packages namely org.aspectj.ajdt.internal.compiler.lookup and

org.aspectj.weaver.bcel. It would be beneficial for compiler developers if

we could explicitly define:

• the control-flow in which the munge(...) method is invoked. This would

facilitate reasoning about the overall type-munging action. Examples of

control-flow information related to munging are munging in the control flow

of processing of type mungers, addition of inter-type declarations, addition

2This is not entirely true, however. Sequence of instructions that do not have side-effects and are not dependent
on each other can be executed in parallel.
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of aspects, and determination of super and sub types.

• the types which contain code related to the munge(...) method. Such

information would be something of following nature: types dealing with

munging are AjLookupEnvironment, EclipseTypeMunger, BcelAccessFor-

InlineMunger, BcelCflowCounterFieldAdder, BcelClassWeaver, BcelPer-

ClauseAspectAdder, and BcelTypeMunger.

• the packages that deal with munging. Examples include name of the pack-

ages, as we saw earlier, containing the appropriate types.

Such information would allow compiler writers focus on only a smaller section

of the compiler, and make it easier to locate the places of interest. The benefit

of such information portrayal arises from reduced time and effort involved in

understanding the compiler implementation for maintenance or extension. This

has led us to aim for explicitly defining these higher-level control-flow structure

in explicating the code.

2. Pluggable implementation

Currently, peephole optimizers are implemented as core compiler code. This

complicates several facilities: configuration of the compiler to operate with or

without the optimizer, and assessments of its performance impacts. This has led

us to consider as design goal the benefit of seamless integration of the optimizer

into the compiler for supporting easier customization and testing.

With these design goals in mind, our specific contributions resulting from modu-

larized implementation of the optimizer are:

• identification of points in the static program structure and dynamic execution

graph of the ajc compiler that are affected by our optimizer,

• an example optimizer that can be enabled or disabled in a pluggable manner,

and

• improvements in the performance of the code generated by ajc.

The next two sections prepare us for understanding the optimizer, its integration

into ajc, and its pluggable nature.
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4.3 Architecture of Intermediate code in AJC

The intermediate code generated by the front end of ajc and accepted by the back end

for bytecode generation is the Instruction-based language. It is a stack-based rep-

resentation that resembles JVM instructions. The Instructions exactly match the

mnemonics of bytecodes. They are modeled as objects, which enables programmers

to obtain a high-level view upon control flow without handling details like concrete

bytecode offsets. Instructions consist of an opcode (sometimes called the tag), a

length in bytes and an offset (or index) within the bytecode. In addition to emitting

bytecodes, bytecode input-streams can be read in and converted to Instruction

types.

Instructions are wrapped into InstructionHandles, objects that are returned

from append and insert operations. A list of Instructions, called an Instruction-

List, is implemented as a list of InstructionHandles, which mediate read-only

traversal of the list. It should be noted that, Instruction is a misnomer in ajc –

references to Instructions in the list are not implemented by Instructions but

by InstructionHandles. In ajc, bytecode instruction equivalents are Instruction-

Handles. This makes appending, inserting and deleting areas of code easier and also

allows us to reuse immutable instruction objects.

Since this form uses symbolic references, computation of concrete bytecode-offsets

does not need to occur until the compiler has finished the process of generating or

transforming code. When an InstructionList is ready to be emitted as pure byte-

code, all symbolic references are mapped to actual bytecode offsets. The intermediate

form provides a method, getByteCode(), to do this easily.

4.4 Code Generation Strategy in AJC

Ajc follows a linear statement-by-statement code-generation strategy. It generates

Instructions and InstructionLists corresponding to field initializers, methods,

static class initializers, advices, aspects and other similar constructs. Further, it

does the same for parts of different actions, such as initializations, method inlinings,

bridge-method creations, method dispatches, load-time and compile-time weaving,
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and managing thisJoinPoint arguments.

Although code generation in ajc occurs in several different places, it can not

perform any sophisticated optimizations, such as whole-program analysis, to improve

code generated at those sites. This is because it supports incremental weaving.

It, however, does some simple optimizations, such as removal of NOP instructions,

and instruction-pattern replacements. Even these implementation are local to the

places where the optimized behavior are desired. Therefore, their implementation is

scattered across different methods in different classes

Now that we have familiarized ourselves with the form of intermediate code in

ajc, and discussed how it is generated, we will describe the actual implementation

details in the next section.

4.5 Implementation

Our design goal is to yield a pluggable model of peephole optimization. The first

step involved is identification of control points dealing with the generation and use

of Instructions and InstructionLists. Once we capture the sites of interest, we

can specialize their behavior for optimization. In this section, we identify the related

join points in ajc and the advices with regard to the optimising effect they express.

4.5.1 Development Aspects

We used two development aspects in order to facilitate our task of identifying po-

tential join points in ajc, where we can specify peephole optimization. Listing 4.1

shows one such aspect. The other is given in Appendix A.

This aspect is declared private so that it has access to all members including

private or protected resources of other types. Let’s examine the aspect in more

detail:

• The first pointcut includeScope() acts as a guard for other pointcuts. It serves

to confine our search to only those types which are within the bcel package.

• The second pointcut accessSites() captures any access or assignment of values

of types Instruction and InstructionList. It is composed of get and set
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1 /∗∗
∗ Aspect to i d en t i f y p laces where in s t ruc t i on s and ins t ruc t i on l i s t s are

3 ∗ accessed , or i n i t i a l i z e d .
∗/

5 public privileged aspect SeekOpt imizat ionS i te s {
/∗∗

7 ∗ Limit the scope of our search to a package
∗/

9 pointcut inc ludeScope ( ) :
within ( org . a sp e c t j . weaver . bce l . . ∗ ) ;

11

/∗∗
13 ∗ Places where in s t ruc t i on s and i n s t r u c t i o n l i s t s

∗ are accessed or i n i t i a l i z e d
15 ∗/

pointcut a c c e s s S i t e s ( ) :
17 get ( I n s t r u c t i o nL i s t ∗)

| | set ( I n s t r u c t i o nL i s t ∗)
19 | | get ( I n s t r u c t i o n ∗)

| | set ( I n s t r u c t i o n ∗ ) ;
21

/∗∗
23 ∗ Exclude jo in points in t e s t s u i t e s

∗/
25 pointcut excludeScope ( ) :

! withincode (∗ ∗ . s u i t e ( . . ) ) ;
27

/∗∗
29 ∗ Composition of a l l po in tcut s of i n t e r e s t

∗/
31 pointcut po t e n t i a l S i t e s 1 ( ) :

inc ludeScope ( )
33 && excludeScope ( )

&& a c c e s s S i t e s ( ) ;
35

/∗∗
37 ∗ Simple advice to examine the a f f e c t e d p laces

∗/
39 after ( ) :

p o t e n t i a l S i t e s 1 ( ){
41 System . out . p r i n t l n ( " Potential site for peephole optimization " ) ;

}
43 }

Listing 4.1: A development aspect.

pointcuts.

• The third pointcut creationSites() captures places where new instances of

Instruction or InstructionList are created. The constituent pointcuts refer

to constructor calls for each type.

• The fourth pointcut excludeTestSuite() excludes consideration of any match-

ing join points that occur in the lexical scope of suite() methods, which are

the test methods.

• The fifth pointcut potentialSites() combines the accessSites() and creat-

ionSites() to capture all places where Instructions or InstructionList

types are accessed for their values, assigned some vaues, or instantiated. The

includeScope() pointcut limits the join points to within the bcel package.
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Similarly, the excludeTestSuite() pointcut precludes matching join points

within test cases.

• The after advice applied to the potentialSites() pointcut simply prints a

message after the matching join points.

By using AJDT, we can now limit our investigation of the ajc compiler to these

places. Obviously, this aspect does not represent all sites of potential interest to us.

The other development aspect is shown in Appendix A.

4.5.2 Optimization Aspects

In this section, we provide three examples of optimization aspects, along with a

description of different sets of pointcuts and advices inserting optimization behavior

into the compiler at those points. In some cases, we show abbreviated advices; their

details are provided in Appendix C.

Optimizing inlined instructions

The first example is about specializing method bodies that will be inlined with

peephole optimization. Let’s examine the related pointcuts and advices in Listing 4.2.

The first pointcut callToGenInlineInstructions() captures calls to genInline-

Instructions() method of the BcelClassWeaver class. This method takes Instr-

uctionList of the method to be inlined, and inlines them to the recipient method.

Carrying out peephole optimization on this list would reduce the size of instructions

that will be inlined.

The second pointcut lexicalScopeAddAjcInitializers() identifies join points

within the lexical scope ofaddAjcInitializers() method within LazyClassGen

class.

The third pointcut callToinitializeAllTjpsWithinLazyClassGenAddAjcIniti-

alizers() captures calls to method initializeAllTjps() of the LazyClassGen

class. Within the addAjcInitializers() method of this class, there is a call to

getStaticInitializer().getBody().insert(il), which inserts a list of instruc-

tions for static initialization of classes. Here, we aim to optimize the list of in-
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1 /∗∗
∗ Pointcuts i d en t i f y i n g in l ined in s t ruc t i on s

3 ∗ And, advice apply ing peephole opt imizat ion to them
∗/

5 pointcut c a l lToGen In l i n e In s t ru c t i on s ( ) :
ca l l (∗ BcelClassWeaver . g e n I n l i n e I n s t r u c t i o n s ( . . ) )

7 && ! within ( PPOptimizer ) ;

9 pointcut l e x i c a l S c op eAddA j c I n i t i a l i z e r s ( ) :
withincode (∗ LazyClassGen . a d dA j c I n i t i a l i z e r s ( ) ) ;

11

pointcut ca l lTo in i t i a l i z eA l lT jp sWi th inLazyC la s sGenAddAjc In i t a l i z e r s ( ) :
13 ca l l (∗ LazyClassGen . i n i t i a l i z e A l l T j p s ( ) )

&& l e x i c a l S c op eAddA j c I n i t i a l i z e r s ( ) ;
15

pointcut ca l lToGetAdv ice Ins t ruc t i ons ( ) :
17 ca l l (∗ BcelAdvice . g e tAdv i c e In s t ruc t i on s (BcelShadow ,

BcelVar ,
19 Ins t ruct ionHand le ) )

&& ! within ( PPOptimizer ) ;
21

pointcut methodsReturn ingIns t ruct ionLi s t ( ) :
23 c a l lToGen In l i n e In s t ru c t i on s ( )

| | ca l lTo in i t i a l i z eA l lT jp sWi th inLazyC la s sGenAddAjc In i t a l i z e r s ( )
25 | | ca l lToGetAdv ice Ins t ruc t i ons ( ) ;

27 Object around ( ) : methodsReturn ingIns t ruct ionLi s t ( ) {
return ( op t im i z e I n s tL i s t ( ( I n s t r u c t i o nL i s t ) proceed ( ) ) ) ;

29 }

Listing 4.2: Example-1: Peephole optimization of inlined instructions.

structions, il, responsible for static initialization of classes; so, we capture the calls

to intializeAllTjps() that are only within the addAjcInitializers() method.

We use the second pointcut, lexicalScopeAddAjcInitializers() for this purpose.

Optimization at this join point would be highly useful when there is a need to create

many static initializers as a result of aspect instantiation on a perObject basis.

The fourth pointcut methodsReturningInstructionList combines all of the

above three pointcuts so that we can refer to all the join points with a single identifier.

Having identified this set of join points for PPO, we now present an advice to in-

corporate peephole optimization. Listing 4.2 shows an around advice applied to the

methodsReturningInstructionList pointcut. This advice captures the list of in-

structions returned, passes them to the peephole optimizer, i.e., optimizeInstList()

and returns the optimized list of instructions. Complete implementation details of

the optimizeInstList() method are shown in Appendix A. This advice has cross-

cutting effect across 19 different locations in ajc; but, its implementation appears

just in this one place.
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Optimizing packed method-bodies

This example is about optimization of instructions generated as part of method-body

creation. Related code for our second example is shown in Listing 4.3

1 /∗∗
∗ Pointcuts i d en t i f y i n g packed method bodies

3 ∗ And, advice apply ing peephole opt imizat ion to them
∗/

5 pointcut callToOptimizedPackBody (MethodGen mgen ) :
( ca l l ( public void LazyMethodGen . optimizedPackBody (MethodGen ) )

7 | | ca l l ( public void LazyMethodGen . packBody (MethodGen ) ) )
&& args (mgen ) ;

9

Object around (MethodGen mgen ) : callToOptimizedPackBody (mgen){
11 mgen . s e t I n s t r u c t i o nL i s t ( op t im i z e I n s tL i s t ( ( ( LazyMethodGen )

( thisJoinPoint . getTarget ( ) ) ) . getBody ( ) ) ) ;
13 return proceed (mgen ) ;

}

Listing 4.3: Example-2: Peephole optimization of packed method-bodies.

The pointcut callToOptimizedPackBody(MethodGen mgen) captures calls to met-

hods that pack a list of instructions into a method body. Here, we intercept the calls

to these methods and capture the list of instructions that are to be packed into the

method body, run peephole optimizer on this list and then pack the method with

this optimized list of instructions as body. The advantage of doing so is that we

would have a method-body with a reduced size. It is because our peephole optimiza-

tion pattern always results in a replacement that has the same or fewer number of

instructions, but not more. We will look at these patterns in subsection 4.5.3

The around advice shown in Listing 4.3 captures the list of instructions of the

target object where the specified join points match, then performs peephole optimiza-

tion on the list and finally, fills the newly created instance (in case of packBody())

or a local copy (in case of optimizedPackBody()) of type MethodGen with this op-

timized list by means of proceed advice. The effect of this advice is over 6 different

places.

Removing NOP instructions

Now, we consider our third and final example shown in Listing 4.4.

The pointcut methodBodyCapture(Object) captures executions of methods run()

or pack() within the LazyMethodGen class. We run the peephole optimizer on the

method body before it is actually packed into the LazyMethod. We do the same
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/∗∗
2 ∗ Pointcuts i d en t i f y i n g p laces with NOP

∗ And, advice apply ing peephole opt imizat ion to them
4 ∗/

pointcut methodBodyCapture ( Object c a l l e e ) :
6 ( execution ( ∗void LazyMethodGen . BodyPrinter . run ( ) )

| | execution ( public MethodGen LazyMethodGen . pack ( ) ) )
8 && target ( c a l l e e )

&& i f ( c a l l e e != null ) ;
10

before ( Object c a l l e e ) : methodBodyCapture ( c a l l e e ){
12 try {

( ( LazyMethodGen ) c a l l e e ) . s t r ipNops ( ) ;
14 } catch ( ClassCastExcept ion cce ) {

cce . pr intStackTrace ( ) ;
16 } catch ( Nul lPo interExcept ion npe ){

npe . pr intStackTrace ( ) ;
18 }

}

Listing 4.4: Example-3: Peephole optimization to remove NOP instructions.

before execution of the method run().

The before advice in Listing 4.4 advises the join points captured by the point-

cut methodBodyCapture(Object) to remove NOP instructions from the body of the

LazyMethodGen types. The target types on which this optimization is to be carried

out are captured as a pointcut context. Hence, NOP instructions will be removed

from the list of instructions (i.e., body) of LazyMethodGen types before any method

body is packed.

It is worth noting here that, by encapsulating these pointcuts and and advices,

aspects facilitate the design of software with a clear separation of concerns. Our

concern, peephole optimization, is clearly modularized in an aspect and can be easily

hooked into the base compiler. In addition, owing to its clean modular structure

and stand alone nature, it is possible to assess the performance of the compiler

in the presence and absence of this optimization. Furthermore, the control flow

dependencies relating to this optimization have become explicit through the pointcut

and advice specifications.

4.5.3 Optimization Patterns

So far, we investigated the sites in the ajc compiler where we can apply PPO. In this

section, we will describe several optimizing transformations, among those we have

we implemented.

1. Unnecessary-code elimination
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Consider the instruction sequence:

(1) ILOAD A

(2) ISTORE A

This sequence of load and store to the same location can be safely eliminated

because executing these operations in sequence leaves the stack unchanged.

However, note that if instruction (2) had a label, we could not be sure that (1)

was always executed immediately before (2) and so we could not remove the

instruction pair.

2. Instruction-strength reduction

Consider the instruction sequence:

(1) ISTORE A

(2) ISTORE A

Lets consider that the stack contained three different values before execution of

these instructions: value1 at the top, value2 immediately below it, and value3

below value3. When the first ISTORE A instruction executes, it removes value1

from stack and stores it in the local variable A. Similarly, the second instruction

retrieves value2, which is now at the top of the stack, and stores it in variable

A, replacing the old value. As we see, the first store to the variable becomes

useless because of the second STORE instruction. This sequence of store and

store to the same location can, therefore, be safely replaced with the following

sequence:

(1) POP

(2) ISTORE A

The new instruction pair is more efficient than the previous one, because POP

is cheaper than ISTORE, as it does not have to store the retrieved value.

Table 4.3 shows a representative list of other replacement patterns and their opti-

mizations that we have implemented.

Our example patterns are not novel, but comprise a number of typical peephole

optimizations, in order to exercise the novel modularity that aspects let us express.
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Table 4.3: Replacement patterns and peephole optimizations.
Pattern Replacement

SWAP SWAP =⇒ [empty]
DUP SWAP =⇒ DUP
ILOAD A POP =⇒ [empty]
DUP POP =⇒ [empty]
DUP X1 POP =⇒ SWAP
ILOAD A ISTORE A =⇒ [empty]
ISTORE A IRETURN =⇒ IRETURN
INEG IADD =⇒ ISUB
INEG ISUB =⇒ IADD
LDC 0 IF ICMPEQ =⇒ IFEQ
LDC 0 IF ICMPNE =⇒ IFNE
LDC 0 IF ICMPLT =⇒ IFLT
LDC 0 IF ICMPGE =⇒ IFGE
LDC 0 IF ICMPGT =⇒ IFGT
LDC IF ACMPNE =⇒ IFNONULL
ISTORE A ISTORE A =⇒ POP ISTORE A
ISTORE A ILOAD A =⇒ DUP ISTORE A
ILOAD A ILOAD A =⇒ ILOAD A DUP

4.6 Evaluation

In earlier sections, we described our peephole optimizer, and illustrated with exam-

ples how aspect-oriented implementation helps to make the control-flow information

explicit, and to obtain a better localized structure of the optimizer in a pluggable

manner.

In this section, we state the results of our assessments. The presentation is divided

into three parts. In the first two parts, we consider the correctness and performance

impacts of our implementation. In the final part, we consider the global question of

modularity, and see how our thesis is supported by this work.

4.6.1 Correctness Assessment

In doing optimization, we attempt to be as aggressive as possible in improving code,

but never at the expense of making it incorrect. An optimizer is said to be safe or

conservative if it guarantees that it does not make a correct program incorrect. In

order to verify this property of our candidate compiler, we ensure that it passed all

the existing JUnit tests. Currently, the ajc consists of more than 3700 test cases

which verify correctness of different compiler functions at different levels of weaving,

from the level of individual functions to end-to-end compilation of large programs.
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Some of the JUnit tests had to be modified to account for optimization. These

are the ones which checked for the ordering and number of different method calls

and output print streams, and the ones which performed comparisons at the level of

Instructions and InstructionLists.

Further, we also validated our modified compiler against 13 popular test suites,

recommended by the developers of ajc. They are distributed along with the ajc.

4.6.2 Performance Assessment

Although it is formally undecidable whether an optimization improves code perfor-

mance in all situations[56, chap. 11], we assess the performance impacts of our peep-

hole optimizer on a number of commonly used AspectJ specific benchmark suites,

and test cases to ensure that it does not significantly slow down the performance, if

not improve it.

Table 4.4 summarizes different metrics used for performance evaluation. On the

Table 4.4: Performance assessment of the peephole optimizer.

Subjects
Compilation Execution

Time(ms) Heap Memory(MB) Non-heap Memory(MB) Garbage Collection Time(ms)Allocated Used Allocated Used Number Time

tracelib 31.25 3.2 1.6 11 11 85 5% 16.32
(+1.1)3.4% (+0.0)0% (+0.3)18.75% (+0.2)18% (+0.0)0% (+0) (+0%) (-1.0)6%

tracev1 28.75 2.6 2.2 11 11 40 3% 14.69
(+1.9)6.6% (+0.4)15% (+0.4)18% (+0.2)18% (+0.0)0% (+0) (+0%) (-0.9)6.12%

tracev2 2.75 2.3 1.8 9.6 9.5 57 5% 8.04
(+0.2)7.2% (+0.4)17% (+0.4)22% (+1.4)14.5% (+0.9)9.47% (+6) (+0.7%) (-0.5)6.21%

tracev3 3.00 2.4 1.7 9.8 9.8 65 5% 10.5
(+0.2)6.7% (+0.2)8.3% (+0.2)11% (+1.4)14.2% (+0.8)8% (+11) (+ 0.8%) (-0.2)2%

tjp 16.25 3.0 1.9 11 11 88 5% 13.74
(+0.8)4.9% (+0.0)0% (+0.1)5% (+2)18% (+0.0)0% (+0) (+0%) (-1.0)7.3%

basic 3.00 2.3 1.9 9.8 9.6 69 5% 6.23
(+0.1)3.3% (+0.4)17% (+0.4)21% (+1.8)18% (+0.1)10% (+6) (+0.7%) (-0.1)1.6%

billing 2.80 2.3 1.4 9.6 9.5 58 4% 8.9
(+0.2)7.1% (+0.0)0% (+0.2)14% (+1.6)16% (+0.5)5% (+7) (+1%) (-0.8)8.9%

timing 3.00 2.4 1.6 9.8 9.6 70 5% 12.8
(+0.3)10% (+0.3)12.5% (+0.3)18% (+1.8)18% (+0.1)10% (+3) (+0.8%) (-1.4)10.9%

spacewar 2.93 2.4 1.9 9.9 9.6 70 5% 7.3
(+0.2)6.8% (+0.1)4.1% (+0.3)15% (+1.3)13% (+0.0)0% (+0) (+0%) (-0.7)9.5%

introduction 3.06 2.4 1.9 11 11 84 5% 9.2
(+0.2)6.5% (+0.1)4.1% (+0.3)15% (+2.0)18% (+1)9% (+6) (+1%) (-0.3)3.2%

coordination 2.53 1.9 1.3 9.0 8.9 44 1% 6.7
(+0.2)7.9% (+0.0)0% (+0.0)0% (+0.0)0% (+0.0)0% (+0) (+0%) (-0.1)1.5%

beam 1.31 1.9 1.6 8.7 8.2 35 0% 5.9
(+0.1)7.6% (+0.0)0% (+0.0)0% (+0.3)3.4% (+0.1)1.2% (+8) (+1%) (-0.0)0%

raceraj 2.00 1.9 1.2 8.7 8.1 35 1% 14.9
(+0.6)30% (+0.6)31% (+0.4)33% (+1.0)11% (+0.5)6% (+4) (+.9)% (-1.2)8.0%

Weighted Avg. +5.6% +7.9% +14.19% +14.18% +4.8% (+4) +.5% -6.1%

left are 13 different benchmark applications. These benchmarks were chosen because
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they include comprehensive test cases, are easily accessible, well defined, and open

source. Across the top are 5 different evaluation criteria for measurement of per-

formance. These are compilation and execution times of the test cases, heap and

non-heap memory allocated during compilation, and number of garbage collections

and percentage of time spent on them.The tests were performed on Mac OS 10.5.6

running on an Intel core 2 Duo MacBook 2.1 with 3 GB memory, 4MB L2 cache,

2.16 GHz processor speed and 667MHz bus speed.

The entries in the first rows corresponding to each subject show the absolute

values of measurements of different evaluation criteria. The entries in the second

row for each subject in the table show the differences between the values for the

original and the re-factored compiler. These are the mean readings obtained from

10 measurements of each evaluation metric.

These numbers were obtained using the Yourkit Java profiling tool[73]. The pos-

itive numbers indicate increased values. Our measurements show that while the

compile time performance increases marginally, the run-time performance improves

marginally as well. The improvements range from 0 to 10%, which is the result of

application of our optimizer. During compilation, time is spent on identifying the

matching patterns, on applying new patterns, and on weaving the aspects. Hence,

there is increase compilation times for the test cases. As aspects are applied, the

compiler creates additional objects, hence, there is an increase in heap and non-heap

memory allocation and use. This has led to an increase in the number of garbage

collections performed by the compiler, and time spent on garbage collection too.

In summary, there is a modest performance improvement resulting from the im-

plemented optimization. It should, however, be noted that our primary goal for

exercising PPO is improved modularity, so any gains in performance simply demon-

strate the effectiveness of the new modularity.

4.6.3 Modularity Assessment

Figure 4.1 is a SeeSoft Eick et al. [24] visualization showing modularity of peephole

optimizer. Each block in the diagram represents a java source file in the compiler and

the length of each block is proportional to the size of the file. The red stripes in the
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blocks represent locations in the source files that are involved in optimization. This

figure was generated using the standard aspect visualization tool, available with the

AspectJ compiler. We found that the effect is pervasive across at least 76 different

locations within 17 different methods of 11 classes.

Figure 4.1: Nature of peephole optimization code – Before and after aspect-
oriented modularization.

One should note that although the peephole behavior affects several modules, the

implementation is well localized into its own distinct module as an aspect. This

is indicated by lighter stripes in the lower SeeSoft representation in Figure 4.1; the

code is not actually present at those places, but its effect is. The optimizing behavior

is encapsulated into separate modules, represented by red-color bars. Further, this

behavior is isolated from the rest of the compiler concerns in such a way that one

can readily plug in or remove this facility from compilation without the need for any

kind of change, either to the compiler or the aspect itself.

Aspect-oriented modularization of peephole optimization is, therefore, well local-

ized and isolated from the rest of the compiler. As we discussed in chapter 2, our

aspect-oriented implementation better captures such cross-cutting concerns.

On the basis of these results, we believe peephole optimizing the intermediate code

is worthwhile, since the optimizer need only be written once and supports additional,

more sophisticated optimizers.

4.7 Related and Future Work

Several prior works describe peephole optimization in compilers[29, 52, 53, 65], but

this work is the first one to explore it from modularity perspective, with aspect-

orientation.
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McKeeman [52] describes how redundant instructions may be discarded during

the final stage of compilation by using peephole-optimizing techniques. We employ

his techniques in this paper during pattern-matching and their replacements with

efficient instruction-sequences.

Another related work is by Tanenbaum et al. [65], which describes peephole op-

timization of intermediate code, in contrast to conventional approaches that focus

on object code or machine code. They describe a table-driven peephole optimizer

that improves the performance of a stack-machine-based intermediate code by about

15% over other techniques. Our work also focuses on intermediate code, but is of a

different form than theirs. Further, our focus is on improving comprehensibility and

reusability, rather than significantly improving performance.

Fraser and Wendt [29] also deal with peephole optimization at the intermediate-

code level. This paper describes a compiler with a code generator and machine-

directed peephole optimizer that are tightly integrated. Both functions are per-

formed by a single rule-based rewriting system that matches and replaces patterns.

They claim that such an organization helps make the compiler simple, fast, and

retargetable, and also corrects certain phase-ordering problems. In contrast, our im-

plementation decouples the optimizer from the code generator as well as the entire

compiler. We claim and demonstrate that such a decoupling helps to seamlessly

integrate or remove the optimizer from the base compiler without the need for any

integration-related changes.

Another related work on peephole optimization is by McKenzie [53]. Their pa-

per describes techniques for increasing the throughput of a peephole optimizer for

intermediate code. The focus of our work is not on increasing the efficiency of our

optimizer in terms of performance, but in terms of explicitness and pluggability.

Existing prior work, as we saw, mostly deal with improving the throughput and

efficiency of the optimizer. None of these works consider modularity in implemen-

tation as their goal. We rely on the descriptions and results of these papers while

implementing the pattern-matching and -replacement rules, but with a primary focus

on making the implementation clear and easily configurable.

83



4.8 Summary

We have described a way to implement peephole optimization for improved modu-

larity. Our mechanism builds on the well-understood principles of compiler peephole

optimization, and uses a typical optimizer with minimal changes.

While it is possible to perform peephole transformations using traditional object-

oriented style, this would result in scattering of the code across methods within

different classes, and tangling with other compiler operations. This is primary the

result of method invocations locally from places chosen for peephole optimization.

Consequently, this would result in a compiler riddled with optimization-related code

in many places. With our approach, the optimizer sits on top of the undisturbed

compiler. It can be run immediately by activating the aspect implementing the

optimization. Similarly, it can also be deactivated by simply removing the aspect

from the compiler build path, or from the load-time weaving process.

The significance of our peephole optimizer is not that it improves the code perfor-

mance, but that it demonstrates how to improve the state of the art compiler design

by isolating semantically independent behaviors from the base compiler, into their

own distinct modules. Peephole optimization is a simple and widely incorporated

concept, the challenge was to render its implementation equally comprehensible, and

maintainable. Our implementation is more comprehensible because we have explic-

itly specified the sites where pattern replacements occur. We also capture the con-

texts that are required during replacement of inefficient instruction sequences with

more efficient ones. Similarly, our optimizer is more amenable to maintenance be-

cause its implementation is free from any unrelated pieces of code dealing with other

compiler operations. As a result, there is no need for investigating and modifying

other pieces of the compiler, except the one dealing with optimization.
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Chapter 5

Error Handling

In this chapter, we discuss aspect-oriented re-factoring of error-handling concerns

in compilers to achieve improved modularity. We claim that such modularization pro-

vides opportunities for better comprehension and increased reuse of error-handling

artifacts compared to conventional approaches to implementation.

We begin with a discussion of error-handling and -recovery concepts, then outline

our intended contributions and related design goals, and follow this with an overview

of the scattered and tangled nature of current error-handling mechanisms. Next, we

present four different examples of our modularization approach. In each example,

we also demonstrate how the modularized units can be evolved to implement error-

recovery actions. Next, we present results of our measurements assessing the costs

and benefits of the implementation from different perspectives. Finally, we describe

related prior work and possible future work emanating from this endeavor.

5.1 Introduction

Recall that a compiler can successfully compile only well-formed programs. Quite

often, the compiler must deal with incorrect input-programs: those containing a

variety of errors arising during any phase of compilation. For instance, it detects

misspelled keywords during lexical analysis, ill-formed expressions (missing paren-

thesis or a semicolon) during syntactic analysis, and application of an operator to

incompatible types during semantic analysis.

A compiler that halts on finding a single error does not effectively help users in

detecting and correcting the program.
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5.1.1 Error Handling

After detecting an error during compilation, most commercial compilers report the

location of additional errors in that phase, along with some meaningful explanations.

This process is called error handling.

Planning error handling from early stages of compiler development can both sim-

plify the structure of compilers and improve their response to errors in the program

to be compiled[67]. A good error handler for input program errors should:

• allow compiler designers to quickly identify the source and associated context

of errors – in order to emit informative messages to the compiler user

• be amenable to improvements,

• maintain compilation performance for correct programs, and

• attempt recovery from simple errors whenever possible.

This is an ideal view of error handlers. In practice, however, the error-handling

concern is not as well implemented as we would like it to be. Its implementation

is spread across several modules, and the control-flow of error-raising and -handling

sites are not explicitly defined.

Although error handling is commonplace and forms a global design issue, few lan-

guages have been designed with error handling in mind [60, 67]. Most programming-

language specifications do not describe how a compiler should respond to errors.

They only define well-formed programs, but leave the decision about handling of

ill-formed programs to compiler designers[71, chap. 9] [67, chap. 4]. As a result,

error handling is often compromised to make compiler development easier.

5.1.2 Error Recovery

In the event of errors, most compilers emit error-related information about the input

program, report failures and stop execution of other phases in compilation. This

behavior can be improved to be more user-friendly. A preferable approach from

users’ perspective is to detect further errors, and better yet some kind of adjustment

to allow the compilation to proceed. Some modern compilers attempt this approach.
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They attempt to adjust certain inputs or values at the point of error in a way that

allows compilation to proceed further. This process is called error recovery.

Error recovery[18] is a four-step process, which consists of:

• detection, which means detecting the presence of an error in the input-program

• diagnosis, which means identifying the location and nature of error, such as

lexical and type errors

• reporting, which means providing useful information to the programmer so that

he/she can identify and correct them, and

• patching, which means modifying the state of the compiler, so that compilation

can proceed

With current compiler implementation techniques, error recovery demands a sig-

nificant amount of time and cognitive effort. The artifacts related to error-handling1–

source, context and control flow – are scattered across different program elements and

tangled with the implementation of other operations. Moreover, the task of identi-

fying such error-related artifacts needs be repeated every time a new error-reporting

or -patching facility is to be introduced.

5.2 Contributions and Design Goals

Error handling is a crucial part of compiler construction. Effective modularization

of error-handling concern, however, is a challenging task.

First, the error concern is tightly coupled to different phases of a compiler, and

is interleaved with the underlying program logic in a complex manner. Consider

the semantic analysis and symbol-table loading phases. The semantic analysis phase

synthesizes and maintains type and value environments as part of type-checking

and symbol-table loading. As a result, error-handling code related to symbol-table

loading and type-checking tend to get tangled with both of these operations. In

addition, since the error-handling code is integrated into methods responsible for

1We will look at them shortly.
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such operations, it leads to tight coupling of error-handling concern with other core

compiler-concerns.

Second, error-related control dependencies are not explicitly defined and localized

into distinct modular units. In fact, they are handled in an inelegant manner. For

instance, some of them are wrapped and thrown as exceptions, while most of them

are handled locally within different methods by guarding possible error-conditions

with a series of if-else statements. As a result, compiler writers must navigate and

understand most of the compiler source for identifying these locations to change or

evolve existing error-handling in compilers.

In light of these problems of non-modular and hidden structure of error handling

in compilers, specific contributions resulting from our modularization are:

1. example identification of points in the static program structure and dynamic

execution graph of the compiler that are responsible for error handling in ajc

2. a diverse set of examples for modularization of distinct kinds of scattered error-

situations.

3. explicit extension points for error recovery in ajc

Our design plan is to identify and explicitly define error handling artifacts:

• sites- locations in the program source code where errors need to be detected

and handled,

• contexts- values synthesized at error sites, calling or executing types, and argu-

ment and return types of error-raising methods, and

• control flows- execution paths in the compiler.

Modularization of these artifacts increases the value of the system in terms of

comprehensibility, reusability, extendibility of error recovery and estimability of new

error-recovery strategies.
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5.3 Error Handling in ajc

So far, we identified error-handling-related modularity problems in compilers, and

then outlined our contributions and related design plans. We will now investigate

error-handling scenario in ajc.

Although ajc2 is a compiler for aspect-oriented programs, it does not incorporate

aspects to modularize the error handlers within itself. Hence, there are plenty of

opportunities for aspectization of error handling concerns. Further, because of its

support for weaving from source code and pre-compiled code, the compiler has to

guarantee the correctness of a single functionality at both these levels. Hence, the

need and opportunity for handling the same error at different levels in ajc provides

a fair level of complexity in modularization of error-handling concerns.

This study primarily targets the weaver end of ajc. The weaver alone generates

more than 150 different error messages. References to these errors, and their handlers

are scattered across different units of code such as methods, classes, and packages.

Examples of errors handled by the weaver end include those related to parsing,

argument binding, type resolution, missing types, compilation environment, and

weaver states.

Any change in an error handling policy, thus, requires a variety of changes, pos-

sibly touching many components of the compiler, including the front-end scanner

and parser, the type checker, the matcher and weaver; and, potentially requiring

relatively sophisticated program analysis to ensure correctness and efficiency.

5.3.1 Limitations of existing design of error handling in ajc

We will now explore the downsides of current design and implementation of error

handling in the context of ajc. Consider Listing 5.1, which shows a snippet of code

from MissingResolvedTypeWithKnownSignatures class.

While attempting to resolve a required type in the World3, if the weaver fails to

find any required dependent type, it logs an error report and then returns an instance

2Although the design decisions were conceived with AspectJ in mind, they are equally applicable to other compilers
in general.

3ajc collects all members that have an invasive effect outside their own compilation unit into a World before any
weaving can take place.
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1 /∗∗ This c l a s s he lps de fer −−cannot f ind type−− errors ∗/
public c lass MissingResolvedTypeWithKnownSignature {

3 public ResolvedMember [ ] g e tDec l a r edF i e ld s ( ) {
raiseCantFindType ( WeaverMessages .CANT FIND TYPE FIELDS ) ;

5 return NO MEMBERS;
}

7 public ResolvedMember [ ] getDeclaredMethods ( ) {
raiseCantFindType ( WeaverMessages .CANT FIND TYPE METHODS) ;

9 return NO MEMBERS;
}

11 . . .
public int ge tMod i f i e r s ( ) {

13 raiseCantFindType ( WeaverMessages .CANT FIND TYPE MODIFIERS) ;
return 0 ;

15 }
}

Listing 5.1: Error reporting for MissingTypes

of this class, instead of simply throwing an error. By assigning this special type,

MissingResolvedTypeWithKnownSignatures, to any missing type or an ill-typed

expression, the compiler allows the type checker to ignore the missing or ill-formed

types whenever it is subsequently encountered. This class defers the production of

the cannot find type error until some code requires such information which cannot

be determined from the type Signature alone. This enables the weaver to be more

tolerant to missing types and thus, delays the compilation failure to a certain extent.

This class has a facility to report errors upon attempts to access various missing

types: fields, methods, interfaces, pointcuts, super-classes and modifiers. Although,

they are neatly modularized in a single class, this implementation has four major

problems:

1. First, there is clear tangling of two different concerns here: the functional and

the error handling requirements. The functional requirement is that these meth-

ods should return some default value of appropriate types. The error-handling

concern is that an error should be reported upon any attempt to access non-

existent attributes of MissingResolvedTypeWithKnownSignatures type. Such

tangling inhibits possibilities of creating and reusing abstractions of error han-

dling and functional operation.

2. Second, it lacks a clear information about program-execution path through

which the errors are reported. A careful examination of the above implemen-

tation reveals that the error reports are generated before these methods return

values, through invocations of raiseCantFindType(..) methods. However,

90



this is not visible outright in the current implementation. This would have

been even more cumbersome in situations where the error-handlers were inter-

spersed across different methods in different classes; because, the loci of such

handlers are not explicitly identified and defined in the compiler source.

3. Third, it lacks an explicit way to situate these error reporters. If a developer

wished to extend existing error reporting, he would have to inspect the code

again to find them. Thus, it lacks a facility to properly define and localize the

context in which these reports should be generated. Further, by looking at this

implementation, it is difficult for compiler writers to ensure if these are the only

methods that call raiseCantFindType(..) methods. Aspects helps us to do

so, an example is given in Appendix B, as Listing B.3. The idea is that upon

any attempts to handle errors from modules other than those solely responsible

for error handling, this aspect generates a warning message.

4. Fourth, this implementation is brittle to changes. For error diagnosis or han-

dling, we might to need to carry out data-oriented or control-oriented changes or

both[47]. Design patterns[30] such as Subject-Observer and Visitor will suffice

for a decently modular implementation, if any one of these changes is required.

In cases where both of them are required, it is difficult to do so without code

repetition and tangling using traditional programming paradigms.

These are the problems we are trying to address by modularization of error-handling

concern.

5.4 Design of Modular Error Handlers

In this section, we describe a general design for modularizing error recovery to sup-

port better comprehension, reduced redundancy, and increased reuse opportunities

for recovery. In short, we identify the points in program execution where error checks

should happen, and explicitly move them into separate modular units, along with

the actions to be taken in case of such errors. Here, we do not propose any efficient

error recovery schemes, but only try to localize and encapsulate such error-related

concerns into clean modular units. Hence, existing error recovery in ajc is not effec-
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tively changed, save for the example implementations depicting the usability of our

design.

To locate declarations and references of error handlers, we followed two main

approaches to code inspection. First, we employed development aspects to identify

the error print streams, loggers, exception-throwers and -handlers. Listing A.3 shows

an example of development aspect employed during modularization of error-handling.

The aspect finds all places in the ajc, where error messages are generated, and

exceptions are thrown. By reaching those sites, we were able to locate only a few

error handling sites.

To identify other customized error reporters, we had to manually inspect the

code. A major finding of this was that the compiler is riddled with error handlers,

and it involved significant effort to locate them. So, here we try to reduce the

economic burden associated with identifying such join points, by encapsulating them

in dedicated modules.

We have implemented a set of aspects in ajc to modularize error-handling per-

taining to:

1. ill-formed AspectJ constructs such as type patterns, pointcuts, advices and

inter-type declarations,

2. failure to create initialization and pre-initialization shadows for type mungers,4

3. failure to type-check and resolve an input-program,

4. violation of type-munging rules during weaving, and

5. incorrect context-bindings in pointcuts.

We supply four examples, and their subsequent reuse and improvement for en-

hanced reporting and recovery. One of these is a syntactice error, while the other

three are semantic ones.

5.4.1 Modularizing MissingType Error Handler

This semantic example is about missing types, first introduced in section 5.3.

4Recall that a munger is a representation for advice and advice-like entities that weaves required behavior at the
join point shadows. See chapter 2 for details.
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We begin by extracting the error-raisers and -throwers related to missing types

from Listing 5.1. Using AspectJ, we extract and modularize handlers related to

missing type error into aspects as shown in Listing 5.2 and 5.3.

/∗∗
2 ∗ Abstract aspect for handling missing and incompatib le types

∗/
4 public abstract p r i v i l e g e d aspect MissingAndIncompatibleTypes {

abstract po intcut currentType ( MissingResolvedTypeWithKnownSignature aType ) ;
6 abstract po intcut contextForMiss ingTypes ( ) ;

abstract po intcut contex tFor Inco r r e c tTypeAss i gnab i l i t y ( ResolvedType otherType ) ;
8 po intcut miss ingResolvedTypes ( MissingResolvedTypeWithKnownSignature aType ) :

currentType ( aType )
10 && contextForMiss ingTypes ( ) ;

po intcut incompat ib l eTypeAss ignab i l i ty ( MissingResolvedTypeWithKnownSignature aType ,
12 ResolvedType otherType ) :

currentType ( aType )
14 && contex tFor Inco r r e c tTypeAss i gnab i l i t y ( otherType ) ;

}

Listing 5.2: Abstract aspect for reporting MissingType error.

1 /∗∗
∗ Concrete aspect for repor t ing missing type error

3 ∗/
p r i v i l e g e d aspect Miss ingResolvedTypeErrorReporter extends MissingAndIncompatibleTypes {

5 protected po intcut contextForMiss ingTypes ( ) :
execut ion ( public ResolvedMember [ ] ∗ . g e tDec l a r edF i e ld s ( ) )

7 | | execut ion ( public ResolvedMember [ ] ∗ . getDeclaredMethods ( ) )
| | execut ion ( public ResolvedType [ ] ∗ . g e tDe c l a r ed In t e r f a c e s ( ) )

9 | | execut ion ( public ResolvedMember [ ] ∗ . g e tDec la redPo intcuts ( ) )
| | execut ion ( public ResolvedType ∗ . g e tSupe r c l a s s ( ) )

11 | | execut ion ( public int ∗ . g e tMod i f i e r s ( ) )
| | execut ion ( public boolean ∗ . hasAnnotation ( UnresolvedType ) ) ;

13

protected po intcut contex tFor Inco r r e c tTypeAss i gnab i l i t y ( ResolvedType otherType ) ;
15

protected po intcut currentType ( MissingResolvedTypeWithKnownSignature aType ) :
17 this ( aType ) ;

}

Listing 5.3: Concrete aspect for reporting MissingTypes error.

After separation of error handlers, the re-factored class now looks as shown in

Listing 5.4, in contrast to Listing 5.1. We will assess the benefits of such modular-

ization later.

The advice shown in Listing 5.5 is part of an abstract aspect MissingAndIncompa-

tibleTypes, and defines the action to take in the event of missingResolvedTypes.

An abstract aspect helps us define a set of events that is left unspecified, but allows us

to give the advice that should apply. Then, in the concrete aspect MissingResolved-

TypeErrorReporter, shown in Listing 5.3, we bind the methods to the join points

to which the advice should be hooked. This way, we are separating location (points

in static program and dynamic execution graph) where errors might be handled
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/∗∗
2 ∗ MissingTypeWithKnownSignature c l a s s a f t e r ex t rac t ion of error handlers

∗/
4 public c lass MissingTypeWithKnownSignature {

public ResolvedMember [ ] g e tDec l a r edF i e ld s ( ) {
6 return NO MEMBERS;

}
8 public ResolvedMember [ ] getDeclaredMethods ( ) {

return NO MEMBERS;
10 }

. . .
12 . . .

public int ge tMod i f i e r s ( ) {
14 return 0 ;

}
16 }

Listing 5.4: MissingTypeWithKnownSignature class after extraction of error-
handling concern.

/∗∗
2 ∗ An improved advice for repor t ing missing type error

∗/
4 be f o r e ( MissingResolvedTypWithKnownSignature aType ) :

miss ingResolvedTypes ( aType ){
6 St r ing typeName = th i s Jo i nPo in tS ta t i cPa r t . ge tS ignature ( ) . getName ( ) ;

S t r ing weaverMsg = WeaverMessages .CANT FIND TYPE;
8 i f ( typeName . endsWith ( " Methods " ) )

weaverMsg = WeaverMessages .CANT FIND TYPE METHODS;
10 else i f ( typeName . endsWith ( " Fields " ) )

weaverMsg = WeaverMessages .CANT FIND TYPE FIELDS ;
12 . . .

. . .
14 else i f ( typeName . endsWith ( " Modifiers " ) )

weaverMsg = WeaverMessages .CANT FIND TYPE MODIFIERS;
16 aType . raiseCantFindType (weaverMsg ) ;}

Listing 5.5: Improved advice for more informative reporting of MissingType error.

from the actions that should be taken to handle them. Further, by looking at the

context associated with the advices, we can infer end-to-end data flow related to

error handlers. In our examples, it is easy to spot that missing type errors are raised

only by instances of MissingResolvedTypeWithKnownSignature types.

Design Evolution Yet another benefit of this modularization is flexibility in accom-

modating design decisions. For instance, suppose we decide to change the design de-

cision to report input-program errors only after returning default values in response

to the getters in Listing 5.1. We can easily implement this change by changing the

kind of advice to after.

At present, our error reporter is näıve in that it says nothing other than missing

type error. If we wish to inform precisely the name of missing type, this change needs

to occur only in the advice body as shown in Listing 5.5. It is, however, reasonable

that in some cases we might have to change the pointcut as well to bind arguments
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and to make our places of interest more evident. Note that by decoupling the error-

handling concern from the functional code, we enable changes to each of them in

relative isolation.

5.4.2 Modularizing ParserException Error Handler

Our first syntactic example is handling errors while parsing. Specifically, here we will

look at errors raised as a result of ill-formed type-patterns and pointcut-expressions.

In order to modularize error handlers related to parsing, we first identify the join

points that lead to ParserExceptions, and capture them as pointcuts. Then, as part

of advice implementation, we surround computation under these join points with try-

catch blocks. The catch block is engineered to perform appropriate error reporting

whenever a ParserException is raised. First consider handling errors when parsing

a given type pattern. Listing 5.6 shows pointcut specification for capturing join

points which might raise ParserException when parsing invalid type-patterns.

/∗∗ Pointcut to capture inva l i d type pat tern ∗/
2 po intcut captureInval idTypePattern ( St r ing pat te rnStr ing , AjAtt r ibuteSt ruct l o c a t i o n ) :

c f l ow ( execut ion ( private stat ic TypePattern parseTypePattern ( Str ing ,
4 AjAttr ibuteSt ruct ) )

&& args ( pat te rnStr ing , l o c a t i o n ) )
6 && ( c a l l ( public TypePattern PatternParser . parseTypePattern ( ) )

| | c a l l ( public void ∗ . s e tLocat i on ( ISourceContext , int , int ) ) ) ;

Listing 5.6: Pointcut to capture invalid type pattern in AspectJ attributes.

From the pointcut definition, we see that invalid type-patterns are detected when

parseTypePattern(..) method is called within parseTypePattern(..) method

itself, in the control flow of execution of the outer parseTypePattern(..) method.

For generating error messages, the pointcut also captures the context using the

args() pointcut.

Similarly, Listing 5.7 depicts pointcuts for capturing join points that raise Parser-

Exception when parsing pointcuts. In this case, the invalid pointcuts are detected

during calls to parsePointcut(..) method in the control flow of execution of an

outer parsePointcut(..) method.

From these pointcut definitions, it is clear that parsing errors occur in the control

flow of top-level or recursive excecution of parseTypePattern or parsePointcut

methods. Since the behavior to identify join points is quite similar, we can abstract
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1 /∗∗ Pointcut to capture inva l i d pointcut ∗/
po intcut capture Inva l idPo in t cut ( S t r ing po intcutSt r ing , AjAtt r ibuteStruct l o c a t i o n ) :

3 c f low ( execut ion ( private stat ic Pointcut parsePo intcut ( Str ing ,
AjAttr ibuteStruct ,

5 boolean ) )
&& args ( po intcutSt r ing , l o ca t i on , ∗ ) )

7 && ( c a l l ( public Pointcut PatternParser . parsePo intcut ( ) )
| | c a l l ( public void ∗ . s e tLocat i on ( ISourceContext , int , int ) ) ) ;

Listing 5.7: Pointcut to capture invalid pointcut definition.

a single advice to report errors at both of these kinds of sites. The advice is shown

in Listing 5.8.

/∗ Report error on capturing in va l i d Type Pattern or Pointcut ∗/
2 Object around ( St r ing patternOrPointcutStr ing , AjAtt r ibuteStruct l o c a t i o n ) :

4 /∗ Pointcuts where s imi lar behavior has to be implemented are composed toge ther ∗/
captureInval idTypePattern ( patternOrPointcutStr ing , l o c a t i o n )

6 | | capture Inva l idPo in t cut ( patternOrPointcutStr ing , l o c a t i o n ) {
try{

8 return proceed ( patternOrPointcutStr ing , l o c a t i o n ) ;
} catch ( ParserExcept ion e ){

10 AtAjAttr ibutes .
r epor tEr ro r ( " Invalid "

12 + th i s Jo i nPo in tS ta t i cPa r t . ge tS ignature ( )
. getName ( ) . r ep l a c e ( "" , " parse " )

14 + patternOrPointcutStr ing + " ’ : "
+ e . toS t r i ng ( )

16 + ( e . getLocat ion ( ) == null ? "" : " at position "
+ e . getLocat ion ( ) . g e tS ta r t ( ) ) , l o c a t i o n ) ;

18 return null ;
}

20 }

Listing 5.8: Advice to report error on finding invalid type pattern or pointcut.

It reports an invalid pointcut or type pattern error, along with its position in the

type pattern or pointcut expression, and also the location in the file.

Design Evolution Besides these, the compiler has to deal with several other errors

that occur during parsing, such as: ill-formed per-clauses, annotation pointcuts,

annotation aspects and other AspectJ constructs. Such closely related pointcuts are

good candidates to be localized into a single aspect that handles parsing errors across

different AspectJ attributes. Further, composing them provides an opportunity to

handle errors through a single advice.

5.4.3 Modularizing InCorrectReturnType Error Handler

Our second semantic example provides recovery from errors that occur when new

types violate type-munging rules. Specifically, when an existing type hierarchy is

changed or new type is introduced, the weaver must ensure that the new types do
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not violate pre-defined type-munging rules. Here, we will look at error handling

related to method overriding in sub-types.

Ajc enforces a covariance of return types in overriding methods[12]. Our example

shows how to capture into single module, this behavior for inter-type declarations.

We have identified and extracted the artifacts related to this error in aspects. The

pointcuts and associated advices are shown in Listing 5.9 and 5.10.

/∗∗ Aspect handling incorrec t return type error during binary weaving of dec lare parents ∗/
2 pointcut checkCompatibi l ityOfReturnTypes ( BcelClassWeaver weaver ,

ResolvedMember superMethod ,
4 LazyMethodGen subMethod ) :

execution ( private boolean BcelTypeMunger .
6 enforceDecpRule4 compatibleReturnTypes ( BcelClassWeaver ,

ResolvedMember ,
8 LazyMethodGen ) )

&& args ( weaver , superMethod , subMethod ) ;
10 Object around ( BcelClassWeaver weaver , ResolvedMember superMethod , LazyMethodGen subMethod ) :

checkCompatibi l ityOfReturnTypes ( weaver , superMethod , subMethod ){
12 i f ( ! superMethod . getTypeSignature ( ) . r ep l a c e ( ’. ’ , ’/ ’ ) .

equa l s ( subMethod . getTypeSignature ( ) . r ep l a c e ( ’. ’ , ’/ ’ ) ) ) {
14 ResolvedType subType = weaver . getWorld ( ) . r e s o l v e ( subMethod . getReturnType ( ) ) ;

ResolvedType superType = weaver . getWorld ( ) . r e s o l v e ( superMethod . getReturnType ( ) ) ;
16

i f ( ! superType . i sAss ignableFrom ( subType ) ) {
18 weaver . getWorld ( ) .

getMessageHandler ( ) .
20 handleMessage ( MessageUti l .

e r r o r ( " Return type is incompatible with "
22 + superMethod . getDeclar ingType ( )

+ "." + superMethod . getName ( )
24 + superMethod . getParameterSignature ( ) ) ,

subMethod . getSourceLocat ion ( ) ) ;
26 }

}
28 return proceed ( weaver , superMethod , subMethod ) ;

}

Listing 5.9: Pointcut to capture overriding methods with incorrect return types.

The pointcut checkCompatibilityOfReturnTypes() identifies sites where type-

munging rules are violated. It describes the situation in which InCorrectReturn is

handled is while enforcing type compatibility rules as part of type-munging rules for

declare parents as indicated by execution (private boolean BcelMunger.enf-

orceDecpRule4compatibleReturn(..)).

The advice then checks to see if the super type is assignable from the sub type.

If the types are not assignable, it reports an incorrect return type error, along with

information about types involved and their source locations.

Listing 5.10 shows yet another site which could raise an incorrect return type

error, along with the advice for reporting this error.

The pointcut checkMungerToAdd() identifies incorrect return type errors that are

handled in the control flow of adding inter-type mungers as indicated by cflow point-
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1 /∗∗ Aspect handling incorrec t return type error whi le weaving from source ∗/
pointcut checkMungerToAdd ( ResolvedType resType ,

3 ResolvedMember parent ,
ResolvedMember ch i l d ) :

5 cflow ( execution ( public void ResolvedType . addInterTypeMunger ( ConcreteTypeMunger ) )
&& this ( resType ) )

7 && ( execution ( public boolean ResolvedType . checkLega lOverr ide (ResolvedMember ,
ResolvedMember ) )

9 && args ( parent , c h i l d ) )
&& i f ( ! Modi f i e r . i s F i n a l ( parent . g e tMod i f i e r s ( ) ) ) ;

11

Object around ( ResolvedType resType , ResolvedMember parent , ResolvedMember ch i l d ) :
13 checkMungerToAdd ( resType , parent , c h i l d ){

i f ( ! ( resType . world . isInJava5Mode ( ) && parent . getKind ( ) == Member .METHOD)) {
15 i f ( ! parent . getReturnType ( ) . equa l s ( ch i l d . getReturnType ( ) ) ) {

resType . world . showMessage ( IMessage .ERROR,
17 WeaverMessages .

format ( WeaverMessages . ITD RETURN TYPE MISMATCH,
19 parent , c h i l d ) ,

c h i l d . getSourceLocat ion ( ) ,
21 parent . getSourceLocat ion ( ) ) ;

}
23 }

return proceed ( resType , parent , c h i l d ) ;
25 }

Listing 5.10: Pointcuts to capture inconsistent method overriding and advice to
handle the error.

cut cflow(execution(public void ResolvedType.addInterTypeMunger(Concret-

eMunger)). The exact point where this happens is while checking the type of

overriding method (resulting from new type munger to be added) as indicated by

execution(public boolean Resolved.checkLegalOverride(...)). Further, we

also have access to the context of this error through the args(..) pointcut.

The advice then check to see if the return types of the parent and overridden

methods are same. If they are not compatible, it reports an error along with other

useful information: the types and methods involved and the exact source locations.

Design Evolution We can improve error handling capability of the compiler by trying

to recover from this error. A simple recovery scheme is to change the return type of

the overriding method so that it is same as that of the overridden method. In doing

so, we need to keep other properties of the overriding method intact.

We have already modularized the related control dependencies, and identified the

associated context and action to trigger in the event of occurrence of this error.

Hence, we can easily reuse this information while implementing the error recovery

action. For example, while weaving from source, this recovery-attempt involves a

replacement of error reporter from the advice with a call to proceed. Essentially, we

continue the current computation with a corrected subMethod with all other argu-
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ments remaining the same. Here, subMethod is the internal name for the overridden

method. The resulting advice is shown in Listing 5.11.

1 /∗∗
∗ Error recovery advice app l i c a b l e to the e x i s t i n g pointcut descr i b ing s i t e s of

3 ∗ incorrec t return type error
∗/

5 Object around ( ResolvedType resType , ResolvedMember parent , ResolvedMember ch i l d ) :
checkMungerToAdd ( resType , parent , c h i l d ){

7 i f ( ! ( resType . world . isInJava5Mode ( ) && parent . getKind ( ) == Member .METHOD)) {
i f ( ! parent . getReturnType ( ) . equa l s ( ch i l d . getReturnType ( ) ) ) {

9 ResolvedMember newChild = co r r e c tCh i l d ( parent , c h i l d ) ;
return proceed ( resType , parent , newChild ) ;

11 }
}

13 else return proceed ( resType , parent , c h i l d ) ;
}

Listing 5.11: Advice to recover from inconsistent method overriding while weaving
from source.

Note that the advice must first replace execution of addInterTypeMunger(Concre-

teMunger munger) with corrected munger instead of the old faulty munger. The

new subMethod is created using the modified munger. Also, note that creating a

new munger with the corrected return type is an expensive operation, because we

must discard some intermediate states obtained after execution of addMunger(..)

and create them all again.

Since our primary focus is on improving modularity in implementation with

reusability as one of the goals, performance issues are neglected in favor of clar-

ity.

This concept of reusability of pointcuts is more visible in Figure 5.1. EHAspectn

represents an indexed family of error-handling aspects where pointcuts are defined

as part of error-handler modularization. Essentially, they intercept methods raising

errors (such as the node labelled C) to generate error reports and make a safe

exit from the program. If it is an exception condition, these aspects can access

control flow contexts and can perform appropriate exception-handling, as indicated

by arrows from nodes C to B to A and then to Error.

As part of error recovery, aspects ERAspectn will reuse pointcuts defined in

EHAspectn. At this point, if there is need for additional context besides those cap-

tured with args() pointcut, we have reflective access to it through thisJoinPoint.

These aspects will also instrument the methods leading to the input-program error,

and try to change the context at the point of error so that compilation could proceed
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Figure 5.1: Artifacts of modular error handling.

further. This is shown by green dotted-arrows in Figure 5.1. The recovery algorithm

implementation for the remaining pointcut is also similar to this. Hence, we skip

discussion of the same. If any new errors stem from recovery attempts, we issue a

warning message so as to apprise users of the attempted error recovery.

5.4.4 Modularizing IncorrectPattern Error Handler

The third semantic error relates to use of un-supported contexts and type-patterns

in pointcuts, such as a cflow context with declare pointcut, and also semantically

incorrect pointcuts, such as a circular pointcuts5.

As there are numerous cases of such errors in pointcuts, we first create an abstract

aspect, and then extend it to handle each particular case. With an abstract aspect,

we can create a reusable unit of crosscutting by deferring some of the implementation

details to the concrete sub-aspects.

Consider the aspect shown in Listing 5.12. In this aspect, the pointcut exactConcr-

etizeSites() (line 16) is declared abstract to allow sub-aspects to provide its defi-

nition. The pointcut commonConcretizeSites() identifies all places where different

kinds ofPointcuts are concretized6. These pointcuts are, then, composed to create

incorrectConcretizeSites pointcut. The net effect is that it helps us define a

5Circular pointcut is a pointcut that refers to itself in its definition.
6Recall that all pointcuts are made concrete from their abstract forms after all the required information are filled

in, following the deep-parsing phase. See subsection 2.6.1 for details.
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/∗∗
2 ∗ Report errors , when type−munging ru l e s are v i o l a t e d

∗/
4 public privileged abstract aspect Incor rec tPo intcutHand le r {

protected St r ing ErrorName = null ;
6 /∗∗

∗ Locate p laces po in tcu t s are concre t i zed
8 ∗/

pointcut commonConcretizeSites ( ResolvedType inAspect , . . , IntMap bind ings ) :
10 execution ( public Pointcut ∗ . c on c r e t i z e 1 ( ResolvedType , ResolvedType , IntMap ) ) ;

/∗∗
12 ∗ Locate exact p laces where s p e c i f i c po in tcu ts are concre t i zed

∗/
14 pointcut abstract exa c tConc r e t i z eS i t e s ( ) ;

/∗∗
16 ∗ Locate p laces which create incorrec t po in tcut s

∗/
18 pointcut i n c o r r e c tCon c r e t i z e S i t e s ( ResolvedType inAspect , . . , IntMap bind ings ) :

commonConcretizeSites ( ResolvedType , . . , IntMap ) )
20 && exac tConc r e t i z eS i t e s ( ) ;

/∗∗
22 ∗ Generate error−repor ts on attempts to create incorrec t po in tcu ts

∗/
24 Pointcut around ( ResolvedType inAspect , . . , IntMap bind ings ) :

i nConc r e t i z e S i t e s ( inAspect , b ind ings ){
26 MessageUti l . e r r o r ( WeaverMessages . format ( this . ErrorName , th i sPo in t cu t ) ,

th i sPo in t cu t . getSourceLocat ion ( ) ) ) ;
28 return Pointcut . makeMatchesNothing ( Pointcut .CONCRETE) ;

}
30 }

Listing 5.12: Abstract aspect to report incorrect pointcuts.

subset of join points represented by concretizing pointcuts, by narrowing the scope

with the abstract pointcut that will be defined in sub-aspects.

The around advice (lines 28 – 33) applied to incorrectConcretizeSites()

pointcut, defines the error-handling action to take upon detecting incorrect pointcut-

patterns and -contexts. The way of handling both these errors is same; the difference

lies in their names. This information is held by the ErrorName string in the base

aspect.

Listing 5.13 depicts a concrete aspect that extends the IncorrectPointcutHandler

aspect. It specializes the abstract aspect with additional information describing

the sites and situations in which the advice defined in the base-aspect must be

applied. One additional requirement is that the executing instance should be of

type CflowPointcut. Next, the pointcut should be a declare kinded one. Essen-

tially, these aspects define error-handling behavior when a cflow context occurs in

a declare pointcut.

Design Evolution Now, consider handling errors related to circular pointcut defini-

tions. For this, we will reuse the abstract aspect defined previously. The concrete

aspect implementing our desired error-handling behavior is shown in Listing 5.14.
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/∗∗
2 ∗ Report errors , when cf low context i s attempted in dec lare cons truc ts

∗/
4 privileged aspect CflowPointcutErrorHandler extends Incor rec tPo intcutHand le r {

6 ErrorName = " Cflow in declare error " ;

8 pointcut exa c tConc r e t i z eS i t e s ( ResolvedType searchStar t ,
IntMap bindings ,

10 CflowPointcut th i sPo in t cu t ) :
&& this ( th i sPo in t cu t )

12 && i f ( th i sPo in t cu t . i sDe c l a r e ( b ind ings . getEnc los ingAdvice ( ) ) ) ;
}

Listing 5.13: Concrete aspect to report cflow in declare pointcut.

This implementation involves specialization of the abstract aspect with additional

information. The first is that the abstract pointcut is now defined to check if the

pointcut in consideration is of type ReferencePointcut, and check if it is concretiz-

ing itself. The other is to initialize the ErrorName field with appropriate string, to

include in the error report.

1 /∗∗
∗ Report errors , when pointcu ts are c i r cu l a r in nature

3 ∗/
privileged aspect Circu larPo intcutErrorHandle r extends Incor rec tPo intcutHand le r {

5

ErrorName = " Circular pointcut error " ;
7

/∗∗
9 ∗ Locate p laces which create incorrec t po in tcut s

∗/
11 pointcut exa c tConc r e t i z eS i t e s ( ResolvedType searchStar t ,

IntMap bindings ,
13 ReferencePointcut th i sPo in t cu t ) :

&& this ( th i sPo in t cu t )
15 && i f ( th i sPo in t cu t . c o n c r e t i z i n g ) ;

}

Listing 5.14: Concrete aspect to report circularity in pointcut.

Thus, we see that by extracting commonalities and localizing them into a separate

module, an abstract aspect provides opportunities for reuse. Our abstract aspect,

containing an abstract pointcut, allows base aspects to implement the crosscutting

logic without needing the exact details. Note that an abstract aspect by itself does

not cause any weaving to occur; therefore, we provide concrete subaspects to do so.

5.5 Evaluation

As we contemplate modular error-handling, the first question that arises is the as-

sociated costs and benefits. In compilers, this means that we have to vouch for

correctness and performance guarantees of our remodularized implementation. We
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begin this section by supporting these guarantees. Next, we evaluate our implemen-

tation from modularity perspective to assess its impact on coupling, its support for

re-usability, and any obstacles to which it might lead.

5.5.1 Correctness Assessment

A fundamental property of compilers is correctness. In order to verify this property

of our candidate compiler, we made sure that it passed all the existing JUnit tests,

and the new ones that tested for correctness of error recovery.

5.5.2 Performance Assessment

For performance assessment, we compare elapsed time to complete the JUnit tests.

Table 5.1 shows the mean results of ten different readings, along with standard

deviations of the results, for both the original and the restructured ajc. The tests

Table 5.1: Assessment of modularization using performance metrics.

Platform Compiler Elapsed Time(sec) σ(sec)

Mac OS X
Original 966.4 9.23

Restructured (+5.2)0.5% (+0.33)3.5%

Ubuntu
Original 959.9 8.11

Restructured (+4.3)0.4% (+0.6)7.3%

Windows XP
Original 959.9 8.11

Restructured (+20)2.0% (+2.33)27%

were performed across three different platforms. First, is the Mac OS 10.5.6 running

on an Intel CoreTM 2 Duo MacBook 2.1 with 3GB memory, 4MB L2 cache, 2.16GHz

processor speed and 667MHz system bus speed. The second is the Windows XP

operating system running on Sony Intel Pentium dual core T3200 Laptop with 2GB

memory, 1MB L2 cache, 2GHz processor speed and 667MHz system bus speed. The

third is the Mandriva Linux OS running on an Intel Core 2 CPU with 2.4GB memory

and 4MB cache and 2.4GHz processor speed.
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We found that modularization of error handlers with aspects resulted in 0.5% – 2%

increase in compilation time of the JUnit test. This small difference between elapsed

time for completion of JUnit tests in the original compiler and error-modularized

compiler demonstrate that time overhead of aspectization of error handlers is min-

imal, usually within the standard deviation. Note that the major source of this

performance overhead is attributable to expensive operations involved in recovering

from the incorrect return type error from an inter-type declared method.

5.5.3 LOC Assessment

To examine the way our modularization affects code size, we first measured the size

of the original and re-factored compilers, making a distinction between the aspect

code and the base code. Their overall size are comparable, as shown in Table 5.2.

These numbers were obtained, using the SLOCount tool.

Table 5.2: Assessment of modularization using LOC metric.

Package LOC in implementation Concerns Modularized

(org.aspectj) OO AO Detection Reporting Recovery

weaver 13548 13159 (195 in aspects)

bcel 16005 15702 (677 in aspects)

Total 29553 29733 (872 in aspects)

A notable point in the above table is the reduced size of the weaver package. This

is the result of removing redundant pieces of code that were previously scattered

across multiple methods within different classes of the weaver package. In the bcel

package, however, there is an increase in overall size – 677 lines of code (LOC) comes

from aspect-orientation (AO). This increase in LOC primarily results from our error

recovery implementation in bcel package. Overall, we see that aspect-orientation

re-factoring has increased the code size by a small number. Another reason for

increased code size is because our implementation contains a number of tiny aspects,

and requires a fair amount of boilerplate for creating the abstract aspects. Our

belief is that aspect-oriented modularization of code related to remaining partially-
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completed error-handlers will lead to a decrease in code size by making use of already

available abstract aspects, thereby removing the redundant pieces of code.

We now examine in some detail how well scattering and tangling of error handling

is managed.

5.5.4 Modularity Assessment

Figure 5.2 shows SeeSoft representations[24] of error handlers in the weaver end of

ajc before and after aspect re-factoring. Colored stripes represent different kinds of

errors and are proportional to the size of the classes represented by the vertical bars.

These figures were generated using the standard aspect visualization tool, available

with the AspectJ compiler.

! !
!8 

Figure 5.2: Nature of error handling before and after modularization.

Before modularization, the error handlers were scattered across methods in 40

different classes as indicated by dispersed lines within the white blocks. After re-

factoring error-handling, we reduced the scattering of error handlers down to 21

classes. Further, we were able to decrease scattering among different methods within

a class. We modularized 8 different groups of related errors, and we believe additional

8 of them could be modularized using the same technique. There are few errors, how-

105



ever, which require code modification to expose the join points for modularization7.

This is an option for future work.

Benefits of Modular Error Handling

Based upon our modularization endeavor in ajc, we provide a list of benefits of sepa-

rating error handling from the program and implementing it as a separate pluggable

construct. These benefits come in two different forms: one, directly resulting from

aspect-oriented modularization. They are improved specification, reduced depen-

dencies, and cleanly separated concerns. The other benefits come in derived form,

they result from the direct ones. They are: improved comprehensibility, increased

reusability, and improved flexibility.

Direct Benefits We first investigate the direct benefits.

1. Simplified error-handling specification: The join point model serves to

define the locations and control flows associated with error handlers. This

makes it easy to identify error recognition loci, because they are now explicitly

defined in their dedicated place: the pointcuts.

2. Reduced Dependencies: In its present state, there is tight coupling between

several classes in ajc because of dependencies relating to error handlers. This is

shown by means of a dependency structure matrix (DSM) in Figure 5.3. Here,

we consider the dependencies arising only due to error concern. With the mod-

ularization we have implemented, the dependencies among classes (represented

by C1, ..., Cn) resulting from error-handling modularization will now look like

one shown in Figure 5.4. This is simply an illustration of the nature of cou-

pling between the classes whose error-handling codes are completely extracted

into aspects. For a complete picture of the dependency relationship between

member classes of ajc, please refer to Appendix D.

After aspect-oriented modularization of the pieces of code related to error

handling, the dependency picture changes dramatically. Dependencies among

classes owing to error-handling concerns are now completely removed for the

7See chapter 6 for details.
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concerns we dealt with. As a result, the classes no longer depend on the error-

handling implementations in other classes. Further, the dependency direction

is now changed such that aspects (represented by A1, ..., An) responsible for

error handling will now depend upon the existence of these classes to collect

required contexts. This new dependency is visible in the lower part of the DSM

in Figure 5.4.

org.aspectj.bcel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

AnnotationAccessFieldVar x x

AnnotationAccessVar x x x x x

AtAjAttributes x

BcelAccessForInlineMunger x x x x

BcelAdvice x x x x

BcelAttributes x x

BcelCflowAccessVar x x x x x

BcelCflowCounterFieldAdder x x

BcelCflowStackFieldAdder x

BcelClassWeaver x x x

BcelField x x x x

BcelFieldRef x x x

 BcelSignatureToTypeConverter x x

BcelMethod x x

BcelObjectType x x

BcelPerClauseAspectAdder x

BcelRenderer x x x

BcelShadow x x x

BcelTypeMunger x x x

BcelVar x x x x x x

BcelWeaver x

BcelWorld x x x

ClassPathManager x

ExceptionRange x

IfFinder x x

LazyClassGen x x x

LazyMethodGen x

PoliceExtensionUse x x x x

Range x x

ShadowRange x x x

TypeAnnotationAccessVar x x x x

UnwovenClassFile x x

 UnwovenClassWithByteCode x x

Utility x

Figure 5.3: DSM for bcel package before error-handling modularization.

3. Cleaner separation of concerns: Separation of error-handling behavior of

classes from normal functional behavior makes it easier to understand what

those two behaviors really are, because their implementations do not collide

in the same text. Additionally, as shown in Figure 5.1, the control flows re-

lated to error handling are separated from other functional control flows. With

traditional object-oriented implementations, one would need to propagate back

along the control flow path in which the error was raised in order to notify

the enclosing types about the error. In Figure 5.1, if the node labelled C is a

method that raises an error, then as indicated by the dashed-arrows, the com-

piler would have to propagate back along the path of its control flow to inform

the enclosing type about the error. This leads to contaminating the functional
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org.aspectj.bcel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

AnnotationAccessFieldVar x x

AnnotationAccessVar x x x x x

AtAjAttributes x

BcelAccessForInlineMunger x x

BcelAdvice x x x

BcelAttributes x x

BcelCflowAccessVar x x x x

BcelCflowCounterFieldAdder x x

BcelCflowStackFieldAdder x

BcelClassWeaver x x x

BcelField x x x

BcelFieldRef x x

 BcelSignatureToTypeConverter x

BcelMethod x x

BcelObjectType x x

BcelPerClauseAspectAdder x

BcelRenderer x x x

BcelShadow x x x

BcelTypeMunger x x x

BcelVar x x x x x

BcelWeaver x

BcelWorld x x x

ClassPathManager x

ExceptionRange x

IfFinder x

LazyClassGen x x x

LazyMethodGen x

PoliceExtensionUse x x x

Range x

ShadowRange x x x

TypeAnnotationAccessVar x x x x

UnwovenClassFile x x

 UnwovenClassWithByteCode x x

Utility x

BcelObjectTypeErrorReporter x x

BcelClassWeaverErrorReporter x

BcelTracking x x x x x x x x x x x x x x x x x x x x x

BcelTypeMungerErrorReporter x x

AtAjAttributesErrorReporter x x x x

 LocateIncorrectOverriding x x x x

Figure 5.4: DSM for bcel package after error-handling modularization.

control with error-handling control flow. However, with aspect-oriented modu-

lar implementations of error handlers, this is not necessary. As the control in

which the input-program error was recognized is already precisely captured by

means of pointcuts, one can use this information for appropriate error handling.

Derived Benefits We now investigate the benefits resulting from the direct ones.

1. Increased comprehensibility of error handlers: In addition to control de-

pendencies, pointcuts also expose the data dependencies associated with the

error handlers. From the list of formals and return values in the pointcut defi-

nition, one can easily infer the data dependencies of error handlers. This serves

to improve their comprehensibility.

2. Increased re-usability: From examples presented in section 5.4, we see that

the error-recovery aspects reuse the pointcuts defined for error reporting. Cor-

rect error recovery schemes need to know the precise sites of error handling, the

type of exception being handled, and the control flow of its occurrence. All such

information is encapsulated by error reporting aspects (ERAspectn). Later, the

error recovery aspects (EHAspectn) reuse these pointcuts to garner such infor-
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mation. Then, they replace the erroneous AST-node in the control flow path

with a corrected one. Other approaches to error recovery might involve re-

suming execution with changed contexts. This will then allow computation to

proceed further, as indicated by dashed arrows in the Figure 5.1.

During modularization, context and operations that are similar to different error

handlers are abstracted out as abstract aspects. These are shown by the top-

level colored boxes in Figure 5.2. Later, these commonalities are reused by

concrete aspects to incorporate operations distinct to each kind of error.

3. Increased flexibility in design decisions regarding errors: Design deci-

sions such as when, where and how to do error handling are easily modifiable.

This benefit comes from the expressive power of the join point model.

These benefits, however, come at the expense of slightly reduced performance, at-

tributable to byte-code weaving and error recovery computations. Overall, modular

error handling engenders key benefits at the cost of modest performance overhead.

Issues in Modularizing Error Recovery

Aspects introduce additional modules into a program; this increases the range of

potential interactions and may have negative impacts on the understandability and

the re-usability of the code. Some examples are:

1. Confounded ordering of error handling aspects: AspectJ does not pro-

vide a simple means of controlling order of application of multiple aspects at

the same join point. AspectJ constructs, such as declare precedence require

global knowledge of all existing aspects to explicitly define the order in which

they should be woven. Thus, any unintended order of aspect composition, re-

sulting from incomplete knowledge of existing aspects, may affect error handling

behavior in ways unanticipated by the developers.

2. Masking of error-handling advices by foreign aspects: It is possible that

an unbounded foreign aspect completely replaces our desired computation by

introducing new advice around adviceexecutions related to error handlers.
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3. Overly-broad application of error handlers: Unbounded pointcuts may re-

sult in advice weaving at unintended points. However, strictly bounded point-

cuts may prove too restrictive at times [51]. It is, therefore, difficult to cor-

rectly identify the circumstances in which foreign pointcuts need bounded and

unbounded pointcuts.

In addition, we found that there is an overall increase in code size because of

aspect-oriented modularization. However, we believe that the code size will eventu-

ally decrease upon modularization of other remaining error handlers that need some

additional work for exposing their join points.

Furthermore, we are not perfectly confident about identification of error handling

pieces of code in ajc in entirety. However, this is an issue which could be overcome

with better design decisions early on – examples include: consistent naming patterns,

annotating each error handling piece of code, and handling errors across the whole

compiler with consistently customized methods.

Overall, we believe our aspect modularization appears to provide a net positive

benefit to the structure and understandability of ajc.

5.6 Related and Future Work

Others [11, 16, 25, 26, 37, 48] have attempted to modularize error-handling concerns.

Lippert and Lopes [48] carried out a study to assess the suitability of aspects for sep-

aration of exception-handling code from normal application code. Likewise, Colyer

et al. [16] carried out a similar study to separate exception handlers from middle-

ware. Lippert and Lopes’s study was later complemented by Filho et al. [26] through

aspect-oriented refactoring of exceptions in different real-world applications. Their

study concluded that although aspectization of exception handlers created increased

opportunities for reuse and decreased interference in the program texts, they are not

always sufficient to encapsulate all possible exceptions. Further, they concluded that

it is difficult to reuse the exception-related artifacts in practice. Our work builds on

theirs and shows that in the domain of error handling in compilers there is benefit

to aspect orientation.
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Another related work is by Hogstedt [37]. It focuses on restoring the safe state of

objects, after a method throws an exception and terminates abruptly. Our goals of

error recovery attempt the same thing, but in the compiler domain.

Fernando et al. [25] have carried out an interesting study of the interplay between

aspects and exceptions. They provide a catalog of exception-handling scenarios to

guide aspectization of exception handling. Their paper does not describe how the

guidelines would change in situations where developers wanted to capture the context

of the exceptions.

Another extension to Fernando et al.’s work is EJFlow [11], a syntactic extension

to the AspectJ language for tracking exception flows. It provides an explicit ex-

ception channel that encapsulates the location of exception raisers, handlers, other

intermediate sites for exceptions that must be signalled to the enclosing context. The

major limitation of the EJFlow tool is that it lacks the power of cflow pointcuts.

For instance, consider an exception that can occur within a single static location.

Depending upon the control flow and context associated with this exception, the

way errors are reported and handled could be totally different. This also applies

to exceptions that are raised from the same static locations in the program code.

EJFlow fails to handle such contexts associated with exceptions, in its present form.

Our work is differs in that we consider handling errors rather than just exceptions in

input-program. Further, our efforts are more complex because we use cflow context

too, which is crucial to error-handling.

Most of these efforts attempt to modularize exception handlers to achieve different

goals. None of these studies have, however, identified the potential for artifact and

knowledge reuse for error recovery that comes from carefully-implemented modular

error-handlers. Our work extends the findings and conclusions of the aforementioned

papers to modularize error recovery.

5.7 Summary

We have shown how error recovery can be modularized by leveraging the expressive

and encapsulative powers of AOP. This is the first published description of imple-

menting modular error recovery in compilers. In contrast to other proposals, this
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study identifies how modularizing error handling provides opportunities for reuse

of existing software artifacts and knowledge to create and add new error-recovery

schemes.

Error handling and recovery often involves comprehending and modifying an un-

familiar and complex code base. Our approach makes it easier to quickly identify

the source and location of input-program error situations, understand their behavior,

and test new recovery schemes. To facilitate this process, this work addresses queries

such as

• what is the control flow in which this error occurs?

– cflow pointcuts, along with advice-weaving rules (before, after, and

around) give this information.

• what is the context when the error is detected?

– the contexts are captured using args, this, and target pointcuts.

• which part of code accommodates a new error recovery flow path?

– evident from pointcut descriptions.

• how to capture this error-situation in another site?

– by composing existing pointcuts with new pointcuts describing the addi-

tional sites of interest.

Answers to such queries provide compiler writers with a broader perspective of

error concerns in the system – such as structural, relational and behavioral – by

the use of static and dynamic information. These sources of information help the

compiler implementers make better informed decisions about error recovery.

We experimentally demonstrate that, in exchange for modest run-time overhead,

error recovery modularization leads to net benefits, deriving from a clean separation

of error concerns from functional concerns.
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Chapter 6

Conclusion

This chapter summarizes our work in relation to the aspect structure of compilers.

We begin with a brief overview of the solution. Then, we outline the contributions of

our work. Finally, we conclude by identifying some open research questions arising

from our implementation and results.

6.1 Summary

Current compiler implementations fail to maintain a clean and direct mapping be-

tween the modules of the implementation and the semantic operations they provide.

A semantic operation is not isolated into a distinct module of its own and often

one module contains scattered and tangled code-segments dealing with many other

operations.

In chapter 3, we saw a number of example concerns that do not have such map-

pings. In three cases, we found that aspects provided a clearer way to modularize

the cross-cutting concerns. They are:

• canonicalization,

• register allocation optimization, and

• compilation sequencing.

Then, we presented four other compiler operations that would form novel and effec-

tive aspect-candidates for modularization. They are:

• lazy evaluation of state dependencies,

• separation of planning and usage of bytecode manipulation tools,

• peephole optimization, and
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• error handling.

After assessing their overall feasibility on the basis of different criteria, we chose the

last two for further examinations, and to test our modularization thesis.

We discussed about the first implementation, peephole optimization in chapter 4.

We capture the essential abstraction of places in the ajc compiler that receive com-

putational effects of the optimizer, and also develop an abstraction of advices with

regard to the effects they express. We identify the points of interest for optimiza-

tion in entirety by means of developmental aspects. They helped us identify all

those places in ajc which generate or group instruction sequences. Furthermore, the

modularized peephole optimizer is designed in such a way that its inclusion into or

exclusion from the core ajc is easy, and does not require any code changes.

We investigated the second candidate, error handling, in chapter 4. The error

handling implementation also creates similar abstractions. In addition, it refines

the aspect classifications, yielding reusable abstract aspects for different groups of

related errors. Furthermore, the encapsulated concerns are now available for others

to improve with efficient error recovery schemes.

We thus demonstrate that aspects provide an effective structuring mechanism

for better modularizing the cross-cutting concerns. Our approach to modularization

helps make control dependencies and associated context explicit. This is important

because control flow information is fundamental to understanding the compiler. In

addition, our approach leads to a more reusable compiler-design by isolating distinct

concerns into their own modules.

In summary, the logical structure of compilers does not align well with their cur-

rent implementation because cross-cutting concerns are scattered and tangled with

their phase structure; and, aspect-oriented modularization of such concerns improves

their comprehensibility, provides better opportunities for reuse, and increases poten-

tial for flexible evolution.

6.2 Contributions

The specific contributions of this work are:
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1. Identification of seven different concerns that pervade the compiler and cannot

be easily localized into clean modular units with mainstream languages. In

one case, separation of Bytecode Engineering Library’s planning and usage in

the weaver, we found that its implementation would offer negligible research

contributions.

2. Code changes that yield an elegant model of modularization of compiler oper-

ations, where

(a) principled points in program execution are represented as dynamic join

points

(b) principled points in program source are represented as static join points

(c) description of these points are denoted by means of pointcuts, and

(d) specializers of the behavior at these control points are denoted by means of

advice.

3. Example modularization of two different cross-cutting concerns:

(a) peephole optimization, demonstrating overall compiler control flow (as phases)

as pluggable units, and

(b) error handling and recovery, as modular extendable units.

4. Identification of the difficulties for modularization of two other cross-cutting

concerns:

(a) separation of the Byte Code Engineering Library from the weaver and

(b) lazy evaluation of state dependencies.

Overall, we found that the logical structure of compilers does not align well with

their current implementation because cross-cutting concerns are currently scattered

and tangled with their phase structure. We demonstrate that aspect-oriented modu-

larization of such concerns improves their comprehensibility, provides better oppor-

tunities for reuse, and increases potential for flexible evolution.

A significant portion of this thesis involved refactoring of an existing compiler in

order to uncover its aspect structure. We made changes to the internal structure of
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ajc to make it easier to understand and simpler to modify and reuse. We stressed that

one should structure compilers not only for computation, but also for understanding

so that it is easy to reason about them by looking at modules from a much higher

perspective. We used aspect-orientation for this purpose and found that there is

clear benefit to it.

It is important to realize that although we demonstrate our modularization in one

particular compiler, the cross-cutting concerns we isolate are inherent in compilers

in general. We feel that our solution strategy has relevance well beyond the AspectJ

compiler, and thus will be of interest to the general compiler community.

6.3 Future Work

As aspect-oriented modularization still remains largely unexplored in the domain of

compilers, many questions remain yet unanswered. These open research questions

pertaining to our work and leading to further investigations come in three groups: one

related to directly extending this work and implementing the remaining candidates;

one related to mining other aspects in ajc and implementing them, and one related

to concerns requiring code changes for exposing the join point.

6.3.1 Extending and Implementing

The first possibility is to implement the remaining viable candidate – lazy evaluation

of state dependencies. Others have begun this work: Warth [70] has implemented

a lazy type system for Java. His implementation is tightly coupled to the base

Java compiler, hence, does not support pluggable integration. A related question to

consider is:

• Can aspect-oriented implementation isolate this lazy behavior into a set of re-

lated modules that can be readily replaced or removed for analysis and extension

purposes?

6.3.2 Aspect Mining in AJC

Another related avenue of future work in ajc is aspect mining – identifying the

scattered and tangled pieces of code implementing a cross-cutting concern. There
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are several tools that aid in mining aspects, such as Aspect Mining Tool[35], AspectJ

Development Tool[23], and FINT[49]. Here is an example of a potential aspect in

ajc.

Shadow-matching Aspect In ajc, entities like advice are represented by shadow-

munger objects. A shadow munger performs transformations on join point shadows

matched by its contained pointcut.

Currently, for every shadow munger defined, ajc examines each different kind of

join points for a given type, to see if it matches the description of the pointcut to

which the shadow munger is bound1. This clearly involves extra work. A better

approach would be to dis-regard all other join point shadows that are irrelevant

to the pointcut in consideration. For instance, if we are dealing with a method-

execution pointcut, it would be desirable to refrain from examining all other kinds

of join points, such as calls and initializations. Questions that need to be addressed

are:

• Can we create join point shadows, and manage the values required at those

points in an incremental manner?

• How modular will this implementation be with aspect-orientation?

6.3.3 Exposing Join Points

The second question relates to code changes for exposing join points. One difficulty

we encountered while modularizing error-handling concern was extraction of error-

related control points that were not identifiable by means of existing pointcuts.

Although AspectJ supports the notion of open-classes, it does not allow access to

the local variables of methods. In several places, ajc generates error messages which

depend upon the values computed locally within nested if-statements that are part

of nested for-loops. For instance, consider Listing 6.1.

1This is not entirely true. For pointcuts guarded with within pointcut, ajc uses a fast-match algorithm. For such
pointcuts, ajc does not examine every single type in order to locate the matching join point shadow. In fact, it does
not even consider the type signature at this point; it quickly tries to find the affected types specified by the within
pointcut. When it finds a match, it returns true, indicating that this is a matching type, but further analyses are
required to determine whether it contains any desired join points, specified by the pointcut with type-signature.
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/∗∗
2 ∗ Extract c l a s s l e v e l annotations and turn them into AjAttr ibutes .

∗/
4 public L i s t r eadAj5Clas sAtt r ibute s ( JavaClass javaClass ,

ReferenceType type ,
6 ISourceContext context ,

IMessageHandler msgHandler ,
8 boolean i sCodeSty leAspect ) {

. . .
10 . . .

Constant [ ] cpoo l = javaClas s . getConstantPool ( ) . getConstantPool ( ) ;
12 for ( int i = 0 ; i < cpoo l . l ength ; i++) {

Constant constant = cpoo l [ i ] ;
14 i f ( constant != null && constant . getTag ( ) = = Constants .CONSTANT Utf8) {

St r ing constantValue = ( ( ConstantUtf8 ) constant ) . getBytes ( ) ;
16 i f ( constantValue . l ength ( ) > 28 && constantValue . charAt (1) = = ’o ’ ) {

i f ( constantValue . s tartsWith ( " Lorg / aspectj / lang / annotation " ) ) {
18 conta insAnnotat ionClassRe fe rence = true ;

i f ( " Lorg /../ annotation / DeclareAnnotation ;" . equa l s ( constantValue ) ) {
20 msgHandler .

handleErr (new Msg( " Found unsupported @DeclareAnnotation ( see ’"
22 + type . getName ( ) + " ’)" ,

IMessage .WARNING, null ,
24 type . getSourceLocat ion ( ) ) ) ;

}
26 i f ( " Lorg /../ annotation / Pointcut ;" . equa l s ( constantValue ) ) {

conta insPo intcut = true ;
28 }

. . .
30 . . .

// fur the r operat ions use containsPointcut
32

return theComputedList ;
34 }

Listing 6.1: Error reporting from nested expressions.

It shows a snippet of code from readAj5ClassAttributes() method, which con-

tains more than 100 lines of code and generates 6 different kinds of error messages.

The method extracts deals with class-level annotations. To generate the error mes-

sage (lines 20 – 25) shown, the compiler traverses the constant pool and checks for

certain conditions expressed by test-conditionals in the if-expressions. As AspectJ

does not provide pointcuts to select such join points, extracting this kind of er-

ror handler would lead to repetition of code related to constant pool traversal and

condition-tests. Although this approach supports isolation of error concern from

annotation-extraction concern, we believe this is not an efficient way of realizing

modularity.

Exposing such join points is another avenue for future work. The pertinent ques-

tions to consider are:

• What kinds of code changes are sufficient for realizing our modularity goal?

• Are any new pointcut facilities required to identify such points in program

execution?
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Appendix A

Development Aspects

This appendix shows development aspects used during aspect-oriented modularization of peep-
hole optimzation and error handling.

A.1 Optimization Category

This aspect is used to identify places where Instructions and InstructionLists are accessed, or
initialized.

/∗∗
2 ∗ Aspect to i d en t i f y p laces where in s t ruc t i on s and ins t ruc t i on l i s t s are

∗ accessed , or i n i t i a l i z e d .
4 ∗/

public privileged aspect SeekOpt imizat ionS i te s {
6 /∗∗

∗ Limit the scope of our search to a package
8 ∗/

pointcut inc ludeScope ( ) :
10 within ( org . a sp e c t j . weaver . bce l . . ∗ ) ;

12 /∗∗
∗ Places where in s t ruc t i on s and i n s t r u c t i o n l i s t s

14 ∗ are accessed or i n i t i a l i z e d
∗/

16 pointcut a c c e s s S i t e s ( ) :
get ( I n s t r u c t i o nL i s t ∗)

18 | | set ( I n s t r u c t i o nL i s t ∗)
| | get ( I n s t r u c t i o n ∗)

20 | | set ( I n s t r u c t i o n ∗ ) ;

22 /∗∗
∗ Exclude jo in points in t e s t s u i t e s

24 ∗/
pointcut excludeScope ( ) :

26 ! withincode (∗ ∗ . s u i t e ( . . ) ) ;

28 /∗∗
∗ Composition of a l l po in tcut s of i n t e r e s t

30 ∗/
pointcut po t e n t i a l S i t e s 1 ( ) :

32 inc ludeScope ( )
&& excludeScope ( )

34 && ac c e s s S i t e s ( ) ;

36 /∗∗
∗ Simple advice to examine the a f f e c t e d p laces

38 ∗/
after ( ) :

40 po t e n t i a l S i t e s 1 ( ){
System . out . p r i n t l n ( " Potential site for peephole optimization " ) ;

42 }
}

Listing A.1: Development aspect to locate initialization and access of
Instructions.
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This aspect is used to identify places where Instructions and InstructionLists are created.
We exclude from consideration those join points which are part of test suites and java langauge
and utility packages.

1 /∗∗
∗ Aspect to i d en t i f y p laces where in s t ruc t i on s and ins t ruc t i on l i s t s are

3 ∗ created , exc luding those in t e s t s u i t e s and java core
∗/

5 public privileged aspect DevelopmentAspectSeekSites {
/∗∗

7 ∗ Limit the scope of our search to a package
∗/

9

pointcut inc ludeScope ( ) :
11 within ( org . a sp e c t j . weaver . bce l . . ∗ ) ;

13 /∗∗
∗ Places where in s t ruc t i on s and i n s t r u c t i o n l i s t s

15 ∗ are created
∗/

17 pointcut c r e a t i o n S i t e s ( ) :
ca l l ( I n s t r u c t i o nL i s t . new ( . . ) )

19 | | ca l l ( I n s t r u c t i o n . new ( . . ) ) ;

21 /∗∗
∗ Exclude jo in points in t e s t s u i t e s

23 ∗/
pointcut excludeScope ( ) :

25 ! within ( SeekOpt imizat ionS i te s )
&& ! withincode (∗ ∗ . s u i t e ( . . ) )

27 && ! ca l l (∗ java . u t i l . . ∗ . ∗ ( . . ) )
&& ! ca l l (∗ java . lang . . ∗ . ∗ ( . . ) )

29 && ! ca l l (∗ org . a sp e c t j . weaver . Te s tUt i l s . ∗ ( . . ) )
&& ! ca l l (∗ org . a sp e c t j . . ∗ . asm . . ∗ . ∗ ( . . ) ) ;

31

/∗∗
33 ∗ Composition of a l l po in tcut s of i n t e r e s t

∗/
35 pointcut po t e n t i a l S i t e s 2 ( ) :

inc ludeScope ( )
37 && excludeScope ( )

&& c r e a t i o n S i t e s ( ) ;
39 /∗∗

∗ Simple advice to examine the a f f e c t e d p laces
41 ∗/

after ( ) :
43 po t e n t i a l S i t e s 2 ( ){

System . out . p r i n t l n ( " Potential site for peephole optimization " ) ;
45 }

}

Listing A.2: Development aspect to locate creation of Instructions.
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A.2 Error Handling Category

This aspect identifies places in ajc that throw or handle exceptions, and access error print streams.

/∗∗
2 ∗ An aspect to i d en t i f y po t en t i a l p laces of error− and exception−handling

∗/
4 aspect SeekAppExceptions {

6 /∗∗
∗ Limit the scope of our search to a package

8 ∗/
pointcut withinScope ( ) : within ( org . a sp e c t j . weaver . . ∗ ) ;

10

/∗∗
12 ∗ Find p laces from where Exceptions are ra ised

∗/
14 dec l a r e warning : withinScope ( ) &&

( ca l l (∗ ∗ ( . . ) throws Exception+)
16 | | ca l l (new ( . . ) throws Exception+)) :

" Any method or constructor call throwing an exception " ;
18

/∗∗
20 ∗ Find catch c lauses handling Exception

∗/
22 dec l a r e warning : withinScope ( ) && handler ( Exception +):

" Exception handling code " ;
24

/∗∗
26 ∗ Find any acess or use of an error stream

∗/
28 pointcut accessErrorStreams ( ) :

set (∗ java . lang . System . e r r )
30 | | get (∗ java . lang . System . e r r )

| | set (∗ java . lang . System . out )
32 | | get (∗ java . lang . System . out )

| | set (∗ Message .ERROR)
34 | | get (∗ Message .ERROR) ;

36 after ( ) : accessErrorStreams ( )
&& withinScope ( ) {

38 System . out . p r i n t l n ( " Error message from : "
+ thisJoinPoint . t oShor tSt r ing ( ) ) ;

40 }
/∗∗

42 ∗ Find c a l l s to customized error handlers
∗/

44 pointcut customizedErrorHandlers ( ) :
ca l l (∗ r epor tEr ro r ( . . ) )

46 | | ca l l (∗ reportWarning ( . . )
| | ca l l (∗ handleMessage ( . . ) ) ;

48

a f t e r ( ) : customizedErrorHandlers ( )
50 && withinScope ( ) {

System . out . p r i n t l n ( " Customized Error handler at :"
52 + th i s Jo i nPo in tS ta t i cPa r t . getSourceLocat ion ( ) ) ;

}
54 }

Listing A.3: Development aspect to locate error handling sites.
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Appendix B

Policy Enforcement Aspects

In this appendix, we present those aspects which enforce ordering of different aspects, and act
as safety checks for future extensions, when new aspects are added.

B.1 Optimization Category

This aspect describes rules to ensure that calls to various optimizers are done safely within intended
modules only. By generating error reports when optimization is done locally, outside of optimizing
aspects, this aspect acts as a safety check for implementation of the optimizer as a separate unit.
This is crucial because all sets of optimization are intended to be pluggable.

/∗∗
2 ∗ Rules to ensure tha t c a l l s to opt imizers are done s a f e l y

∗ Acts as sa f e t y check for fu ture ex tens ions
4 ∗/

privileged aspect CompilationAdviceRecipe iss ingleton ( )
6 {

/∗∗
8 ∗ NOP removal must not be l o c a l

∗ Globa l l y handled by RemoveNops module
10 ∗/

dec l a r e e r r o r :
12 ca l l (∗ ∗ . s t r ipNops ( ) )

&& ! within (RemoveNops ) :
14 " Nops must be removed only from RemoveNops aspect " ;

/∗∗
16 ∗ Peephole opt imizat ion must be done from PPOptimizer module

∗/
18 dec l a r e e r r o r :

ca l l (∗ ∗ . f i l t e r ( ) )
20 && ! within ( PPOptimizer ) :

" PPO must be done by PPOptimizer aspect " ;
22 /∗∗

∗ Remove f a l l through GOTOs from UpdateGoToLabels aspect
24 ∗/

dec l a r e e r r o r :
26 ca l l (∗ ∗ . s t r ipFal lThroughGotos ( ) )

&& ! within ( UpdateGoToLabels ) :
28 " Unnecessary GoTo labels should only be removed from method body " ;

}

Listing B.1: Aspect to enforce isolation of optimizations from core compiler.
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This aspect defines the order in which different optimizers should be applied.

1 /∗∗
∗ Aspect de f in ing the order of our opt imizat ions

3 ∗/
public aspect OptimizationOrder iss ingleton ( ) {

5

/∗∗
7 ∗ We decide to carry out opt imizat ion in fo l l ow ing order

∗/
9

dec l a r e precedence :
11 RemoveUnreachableCode ,

PPOptimizer ,
13 RemoveNops ,

UpdateGoToLabels ,
15 ∗ ;

17 }

Listing B.2: Aspect defining precedence between various optimizations.
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B.2 Error Handling Category

In this section, we present aspects enforcing our desired behavior regarding error handling.
The first aspect RestrictErrorHandlingToAspects warns compiler writers upon any attempts

to perform error handling locally within different modules, responsible for other core functions. It
ensures that error handling is done only by aspects dedicated for this purpose.

1 /∗∗
∗ An aspect to enforce tha t error−handling i s not performed l o c a l l y

3 ∗/
aspect Restr ictErrorHandl ingToAspects {

5

/∗∗
7 ∗ Limit error− and exception−handling to these aspects .

∗/
9 pointcut al lowedScope ( ) :

within ( org . a sp e c t j . weaver . ParserErrorHandl ingAspect )
11 | | within ( org . a sp e c t j . weaver . TypeErrorHandlingAspect )

| | within ( org . a sp e c t j . weaver . WeavingErrorHandlingAspect )
13 | | within ( org . a sp e c t j . weaver . MungingErrorHandlingAspect ) ;

15 /∗∗
∗ Emit warning i f except ion throws occur out of permitted modules

17 ∗/
dec l a r e warning :

19 ! a l lowedScope ( )
&& ( ca l l (∗ ∗ ( . . ) throws Exception+)

21 | | ca l l (new ( . . ) throws Exception+)) :
" Error handling should be done globally " ;

23

/∗∗
25 ∗ Find any acess or use of an error stream

∗/
27 pointcut accessErrorStreams ( ) :

set (∗ java . lang . System . e r r )
29 | | get (∗ java . lang . System . e r r )

| | set (∗ java . lang . System . out )
31 | | get (∗ java . lang . System . out )

| | set (∗ Message .ERROR)
33 | | get (∗ Message .ERROR) ;

35 /∗∗
∗ Find c a l l s to customized error handlers

37 ∗/
pointcut customizedErrorHandlers ( ) :

39 ca l l (∗ r epor tEr ro r ( . . ) )
| | ca l l (∗ reportWarning ( . . )

41 | | ca l l (∗ handleMessage ( . . ) ) ;

43 /∗∗
∗ Emit warning i f error repor t s are generated outs ide of permitted modules

45 ∗/
dec l a r e warning :

47 ! a l lowedScope ( )
&& accessErrorStreams ( )

49 && customizedErrorHandlers ( ) :
" Local error reporting is not permitted " ;

51

}

Listing B.3: Aspect to generate warning at the sites of local error-handling.
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Appendix C

Optimization Methods in Detail

Here, we present in detail the methods related to different kinds of optimizations that we
performed.

The optimizeInstList(..) walks over Instructions and InstructionLists and tries to find
any potential places for peephole optimization.

C.1 Optimization of InstructionLists

/∗∗
2 ∗ S l i de through window of two consecut ive in s t ruc t i on s and look for

∗ po t en t i a l pat terns for opt imizat ion
4 ∗

∗ F i l t e r : s t a t i c c l a s s ho ld ing information about new ins t ruc t i on s
6 ∗ tha t rep lace peephole pat terns

∗
8 ∗ This method i s part of PPOOptimizer aspect

∗/
10

public I n s t r u c t i o nL i s t op t im i z e I n s tL i s t ( I n s t r u c t i o nL i s t body ) {
12 Ins t ruct ionHand le curr , next ;

curr = body . g e tS ta r t ( ) ;
14 while ( curr != null ) {

next = curr . getNext ( ) ;
16 i f ( next == null )

break ;
18 next = curr . getNext ( ) ;

I n s t r u c t i o n c u r r i n s t = curr . g e t I n s t r u c t i o n ( ) ;
20 I n s t r u c t i o n nex t i n s t = next . g e t I n s t r u c t i o n ( ) ;

F i l t e r peep = null ;
22 peep = f i l t e r ( cu r r i n s t , n ex t i n s t ) ;

i f ( peep != null ) {
24 i f ( peep . r ep l a c e . l ength == 0) {

System . out . p r i n t l n ( " Eliminate "+ cu r r i n s t + " to "+ next in s t ) ;
26 } else {

28 System . out . p r i n t l n ( " Eliminate "+ cu r r i n s t + " to "+ next in s t ) ;
System . out . p r i n t l n ( " with " ) ;

30

for ( int j = 0 ; j < peep . r ep l a c e . l ength ; j++) {
32 System . out . p r i n t l n ( " " + peep . r ep l a c e [ j ] ) ;

}
34 }

try {
36 body . d e l e t e ( next ) ;

} catch ( TargetLostException e ) {
38 System . out . p r i n t l n ( " Invalid deletion attempt " ) ;

}
40 try {

body . d e l e t e ( curr ) ;
42 } catch ( TargetLostException e ) {

System . out . p r i n t l n ( " Invalid deletion attempt " ) ;
44 }

46 for ( int k = peep . r ep l a c e . l ength − 1 ; k >= 0 ; k−−) {
body . i n s e r t ( next , peep . r ep l a c e [ k ] ) ;

48 }
}

50 curr = next ;
}

52 return body ;
}

Listing C.1: Method managing optimization of instruction lists.
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C.2 Removal of NOPs

This method is responsible for removing NOPs and then, managing the InstructionHandles ap-
propriately.

1 /∗∗
∗ Remove NOPs and update the o ldTargeters to ta rge t the next in s t ruc t i on

3 ∗/
public void LazyMethodGen . str ipNops ( ) {

5

Ins t ruct ionHand le curr = body . g e tS ta r t ( ) ;
7 while ( true ) {

i f ( curr == null )
9 break ;

In s t ruct ionHand le next = curr . getNext ( ) ;
11 i f ( next == null )

break ;
13 i f ( curr . g e t I n s t r u c t i o n ( ) . getOpcode ( ) == Constants .NOP) {

body . d e l e t e ( curr ) ; // curr . removeAllTargeters ( ) ;
15 I n s t ru c t i onTarg e t e r [ ] t a r g e t e r s = curr . getTargetersArray ( ) ;

i f ( t a r g e t e r s != null ) {
17 for ( int i = 0 , l en = t a r g e t e r s . l ength ; i < l en ; i++) {

I n s t ru c t i onTarg e t e r t a r g e t e r = t a r g e t e r s [ i ] ;
19 t a r g e t e r . updateTarget ( curr , next ) ;

}
21 }

23 }
curr = next ;

25 }
}

27 }

Listing C.2: Method for removing NOP instructions.
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C.3 Removal of unreachable code

This method removed unreachable pieces of code, and then manages the InstructionHandles
appropriately.

1 /∗∗
∗ Inter−type dec lared method for removing unreachable code

3 ∗/
public void LazyMethodGen . str ipUnreachableCode ( ) {

5 I n s t r u c t i o nL i s t mutableBody = body . copy ( ) ;
f ina l HashMap<Object , Integer> l abe lPos = new HashMap<Object , Integer >() ;

7 Ins t ruct ionHand le cu r r en t i h = body . g e tS ta r t ( ) ;
f ina l I n s t r u c t i o n cu r r e n t i n s t = cur r en t i h . g e t I n s t r u c t i o n ( ) ;

9 int i = 1 ;
I t e r a t o r i I t e r = body . i t e r a t o r ( ) ;

11 while ( i I t e r . hasNext ( ) ) {
f ina l Object ce = i I t e r . next ( ) ;

13 Ins t ruct ionHand le insthan = ( Ins t ruct ionHand le ) ce ;
i f ( insthan . hasTargeters ( ) ) {

15 l abe lPos . put ( ce , new I n t eg e r ( i ) ) ;
i++;

17 }
}

19

/∗∗
21 ∗ Vis i t the b lock s depth− f i r s t .

∗ Stack of Labels tha t begin b lock s tha t have been v i s i t e d
23 ∗/

f ina l Set<In s t ruc t i on > v i s i t e d =
25 Co l l e c t i o n s . synchron izedSet (new HashSet<In s t ruc t i on > ( ) ) ;

27 /∗∗
∗ Stack of Labels tha t begin b lock s tha t have not been v i s i t e d .

29 ∗/
Stack<In s t ruc t i on > s tack = new Stack<In s t ruc t i on >() ;

31 i f ( ! body . isEmpty ( ) ) {
v i s i t e d . add ( cu r r e n t i n s t ) ;

33 s tack . push ( cu r r e n t i n s t ) ;
}

35 while ( ! s tack . isEmpty ( ) ){
I n s t r u c t i o n cu r r e n t l a b e l = null ;

37 try {
c u r r e n t l a b e l = ( I n s t r u c t i o n ) s tack . pop ( ) ;

39 } catch ( ClassCastExcept ion e ) {
// TODO Auto−generated catch b lock

41 e . pr intStackTrace ( ) ;
}

43 I n t eg e r l abe l Index = ( In t eg e r ) l abe lPos . get ( c u r r e n t l a b e l ) ;
i f ( l abe l Index == null )

45 break ;
try {

47 i = labe l Index . intValue ( ) ;
} catch ( Nul lPo interExcept ion e ) {

49 // TODO Auto−generated catch b lock
e . pr intStackTrace ( ) ;

51 }
for ( Ins t ruc t ionHand le ih = body . g e tS ta r t ( ) ; ih != null ; ih = ih . getNext ( ) ){

53 I n s t r u c t i o n i n s t = ih . g e t I n s t r u c t i o n ( ) ;
i f ( ! ih . hasTargeters ( ) ){ //ADDED NOW

55 i f ( i n s t . i sRe tu rn In s t ru c t i on ( ) | |
i n s t . getOpcode ( ) == Constants .ATHROW){

57 break ;
}

59 . . . //continued in next page

Listing C.3: Inter-type declared method for removing unreachable code.
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60 . . . //continued from previous page}
else i f ( i n s t . i s J s r I n s t r u c t i o n ( ) | |

62 ( Constants . i n s tF l a g s [ i n s t . getOpcode ( ) ] & Constants . IF INST ) != 0){
i f ( ! v i s i t e d . conta in s ( c u r r e n t l a b e l ) ){

64 v i s i t e d . add ( cu r r e n t l a b e l ) ;
s tack . push ( c u r r e n t l a b e l ) ;

66 }
else i f ( i n s t . i sGoto ( ) ){

68 c u r r e n t l a b e l = i n s t ;
i f ( ! v i s i t e d . conta in s ( c u r r e n t l a b e l ) ){

70 v i s i t e d . add ( cu r r e n t l a b e l ) ;
s tack . push ( c u r r e n t l a b e l ) ;

72 }
break ;

74 }
else i f ( i n s t . i sRe tu rn In s t ru c t i on ( ) ){

76 break ;
}

78

else i f ( i n s t . getOpcode ( ) == Constants .TABLESWITCH
80 | | i n s t . getOpcode ( ) == Constants .LOOKUPSWITCH){

f ina l Ins t ruct ionHand le [ ] sw i t ch t a r g e t s =
82 ( ( I n s t r u c t i o nS e l e c t ) i n s t ) . getTargets ( ) ;

for ( int j = 0 , s l e n = sw i t ch t a r g e t s . l ength ; j < s l e n ; j++){
84 c u r r e n t l a b e l = sw i t ch t a r g e t s [ j ] . g e t I n s t r u c t i o n ( ) ;

86 i f ( ! v i s i t e d . conta in s ( c u r r e n t l a b e l ) ){
v i s i t e d . add ( cu r r e n t l a b e l ) ;

88 s tack . push ( c u r r e n t l a b e l ) ;
}

90 }
break ;

92 }
} else i f ( ih . hasTargeters ( ) ){

94 c u r r e n t l a b e l = i n s t ;
v i s i t e d . add ( cu r r e n t l a b e l ) ;

96 }
}

98 }
boolean r eachab le = fa l se ;

100 I t e r a t o r i n s t I t e r = mutableBody . i t e r a t o r ( ) ;
while ( i n s t I t e r . hasNext ( ) ) {

102 Ins t ruct ionHand le inhToObj = ( Ins t ruct ionHand le ) i n s t I t e r . next ( ) ;
i f ( inhToObj . hasTargeters ( ) ) {

104 I n s t r u c t i o n forLookUpInVis i ted = inhToObj . g e t I n s t r u c t i o n ( ) ;
i f ( ! v i s i t e d . isEmpty ( ) ) { //HashSet

106 r eachab le = v i s i t e d . conta in s ( forLookUpInVis i ted ) ;
}

108 }
else i f ( ! r eachab l e ){

110 i f ( body . conta in s ( inhToObj ) ){
try {

112 body . d e l e t e ( inhToObj ) ;
} catch ( TargetLostException e ) {

114 throw new BCException ( " should not happen " ) ;
}

116 }
}

118 }

Listing C.4: Inter-type declared method for removing unreachable code (contd.).
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1 /∗∗ F i l t e r represents a se t of in s t ruc t i on s tha t r e s u l t from a peephole opt imisat ions . ∗/
stat ic c lass F i l t e r {

3 I n s t r u c t i o n [ ] r ep l a c e ;
F i l t e r ( ) {

5 r ep l a c e = new I n s t r u c t i o n [ 0 ] ; }
F i l t e r ( I n s t r u c t i o n r ep l a c e ) {

7 this . r e p l a c e = new I n s t r u c t i o n [ ] { r ep l a c e } ;}
F i l t e r ( I n s t r u c t i o n rep lace1 , I n s t r u c t i o n r ep l a c e2 ) {

9 r ep l a c e = new I n s t r u c t i o n [ ] { rep lace1 , r ep l a c e2 } ;}
}

11 public stat ic F i l t e r f i l t e r ( I n s t r u c t i o n f i r s t , I n s t r u c t i o n second ){
switch ( second . getOpcode ( ) ){

13 case Constants .SWAP:
i f ( f i r s t . getOpcode ( ) == Constants .SWAP){ //Eliminate swap−swap

15 return new F i l t e r ( ) ;
}

17 i f ( f i r s t . getOpcode ( ) == Constants .DUP){ //swap means nothing i f i t ’ s a f t e r a dup .
return new F i l t e r ( f i r s t ) ;

19 }
break ;

21 . . .
case Constants .POP2:

23 switch ( f i r s t . getOpcode ( ) ){
case Constants .LDC:

25 Assert . i sTrue ( ( f i r s t . getType ( ) == Type .LONG) | | ( f i r s t . getType ( ) == Type .DOUBLE) ,
" Unable to pop2 a 1- word operand " ) ;

27 case Constants .LLOAD: // Fa l l through
return new F i l t e r ( ) ; // Eliminate push and pop

29 }
break ;

31 . . .
case Constants . IF ICMPNE :

33 // Replace ldc 0−i f icmpne with i fne
i f ( f i r s t . getOpcode ( ) == Constants .LDC) {

35 i f ( f i r s t . i sCons t an t In s t ru c t i on ( ) ) {
i f ( f i r s t . getValue ( ) . intValue ( ) == 0) {

37 return new F i l t e r (new Inst ruct ionBranch ( Constants . IFNE ,
second . getValue ( ) . intValue ( ) ) ) ;

39 }
}

41 }
break ;

43 . . .
switch ( second . getOpcode ( ) ) {

45 // Replace store−load with dup−store , load−load with load−dup
case Constants . ILOAD:

47 i f ( f i r s t . getOpcode ( ) == Constants . ISTORE) {
i f ( f i r s t . equa l s ( second ) ) {

49 return new F i l t e r (new I n s t r u c t i o n ( Constants .DUP) , f i r s t ) ;
}

51 }
i f ( f i r s t . getOpcode ( ) == Constants . ILOAD) {

53 i f ( f i r s t . equa l s ( second ) ) {
return new F i l t e r ( f i r s t , new I n s t r u c t i o n ( Constants .DUP) ) ;

55 }
}

57 break ;
return null ;

59 }
}

Listing C.5: Implementation of pattern matching and replacement for peephole
optimization.
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Appendix D

Design Structure Matrices

In this chapter, we show the Design Structure Matrices for the ajc in order to demonstrate the
impact of aspect-oriented modularization on dependencies between different classes. This figure is
automatically generated by Lattix Design Structure Matrix tool.

This DSM depicts coupling between classes of weaver package before modularization of error-
handling concerns.

Figure D.1: DSM for weaver package before error-handling modularization.
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This DSM depicts coupling between classes of weaver package after modularization of error-
handling concerns.

Figure D.2: DSM for weaver package after error-handling modularization.
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