14,556 research outputs found

    Energy flow and fluctuations in non-equilibrium conformal field theory on star graphs

    Get PDF
    We consider non-equilibrium quantum steady states in conformal field theory (CFT) on star-graph configurations, with a particular, simple connection condition at the vertex of the graph. These steady states occur after a large time as a result of initially thermalizing the legs of the graph at different temperatures, and carry energy flows. Using purely Virasoro algebraic calculations we evaluate the exact long-time cumulant generating function for these flows. We show that this function satisfies a generalization of the usual non-equilibrium fluctuation relations. This extends the results by two of the authors (J. Phys. A 45: 362001, 2012; arXiv:1302.3125) to the cases of more than two legs. It also provides an alternative derivation centered on Virasoro algebra operators rather than local fields, hence an alternative regularization scheme, thus confirming the validity and universality of the long-time cumulant generating function. Our derivation shows how the usual Virasoro algebra leads, in large volumes, to a continuous-index Virasoro algebra for which we develop diagramatic principles, which may be of interest in other non-equilibrium contexts as well. Finally, our results shed light on the Poisson process interpretation of the long-time energy transfer in CFT.Comment: 26 pages, 2 figure

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201

    Notes on Melonic O(N)q1O(N)^{q-1} Tensor Models

    Get PDF
    It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group O(N)q1O(N)^{q-1} agrees with the large NN limit of the SYK model. In these notes we investigate aspects of the dynamics of the O(N)q1O(N)^{q-1} theories that differ from their SYK counterparts. We argue that the spectrum of fluctuations about the finite temperature saddle point in these theories has (q1)N22(q-1)\frac{N^2}{2} new light modes in addition to the light Schwarzian mode that exists even in the SYK model, suggesting that the bulk dual description of theories differ significantly if they both exist. We also study the thermal partition function of a mass deformed version of the SYK model. At large mass we show that the effective entropy of this theory grows with energy like ElnEE \ln E (i.e. faster than Hagedorn) up to energies of order N2N^2. The canonical partition function of the model displays a deconfinement or Hawking Page type phase transition at temperatures of order 1/lnN1/\ln N. We derive these results in the large mass limit but argue that they are qualitatively robust to small corrections in J/mJ/m.Comment: 60 pages, 7 figure

    A double coset ansatz for integrability in AdS/CFT

    Full text link
    We give a proof that the expected counting of strings attached to giant graviton branes in AdS_5 x S^5, as constrained by the Gauss Law, matches the dimension spanned by the expected dual operators in the gauge theory. The counting of string-brane configurations is formulated as a graph counting problem, which can be expressed as the number of points on a double coset involving permutation groups. Fourier transformation on the double coset suggests an ansatz for the diagonalization of the one-loop dilatation operator in this sector of strings attached to giant graviton branes. The ansatz agrees with and extends recent results which have found the dynamics of open string excitations of giants to be given by harmonic oscillators. We prove that it provides the conjectured diagonalization leading to harmonic oscillators.Comment: 33 pages, 3 figures; v2: references adde

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    Multiresolution community detection for megascale networks by information-based replica correlations

    Full text link
    We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation of information, and other measures in principle give a quantitative estimate of the "best" resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can in principle be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the "resolution limit" that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40 million nodes and more than one billion edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200000 nodes and 10 million edges on a single processor with exceptionally high accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for community detection and O(L^{1.3} log N) for the multiresolution algorithm where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change

    Anderson-like Transition for a Class of Random Sparse Models in d >= 2 Dimensions

    Full text link
    We show that the Kronecker sum of d >= 2 copies of a random one-dimensional sparse model displays a spectral transition of the type predicted by Anderson, from absolutely continuous around the center of the band to pure point around the boundaries. Possible applications to physics and open problems are discussed briefly.Comment: 19 pages, 1 figure. New version corrects misprints and adds pertaining reference

    Approximating Holant problems by winding

    Full text link
    We give an FPRAS for Holant problems with parity constraints and not-all-equal constraints, a generalisation of the problem of counting sink-free-orientations. The approach combines a sampler for near-assignments of "windable" functions -- using the cycle-unwinding canonical paths technique of Jerrum and Sinclair -- with a bound on the weight of near-assignments. The proof generalises to a larger class of Holant problems; we characterise this class and show that it cannot be extended by expressibility reductions. We then ask whether windability is equivalent to expressibility by matchings circuits (an analogue of matchgates), and give a positive answer for functions of arity three
    corecore